Home
Class 12
MATHS
The derivative of sin^(-1)((sqrt(1+x)+sq...

The derivative of `sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2))` with respect to x is

A

`-(1)/(2sqrt(1-x^(2)))`

B

`(1)/(2sqrt(1-x^(2)))`

C

`(2)/(sqrt(1-x^(2)))`

D

`(-2)/(sqrt(1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin^{-1}\left(\frac{\sqrt{1+x} + \sqrt{1-x}}{2}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Rewrite the function Let: \[ y = \sin^{-1}\left(\frac{\sqrt{1+x} + \sqrt{1-x}}{2}\right) \] ### Step 2: Substitute \( x \) with \( \cos(2\theta) \) To simplify the expression, we can use the substitution: \[ x = \cos(2\theta) \] Then, we can express \( \sqrt{1+x} \) and \( \sqrt{1-x} \): \[ \sqrt{1+x} = \sqrt{1 + \cos(2\theta)} = \sqrt{2\cos^2(\theta)} = \sqrt{2} \cos(\theta) \] \[ \sqrt{1-x} = \sqrt{1 - \cos(2\theta)} = \sqrt{2\sin^2(\theta)} = \sqrt{2} \sin(\theta) \] ### Step 3: Substitute back into the function Now substituting these into our expression for \( y \): \[ y = \sin^{-1}\left(\frac{\sqrt{2}\cos(\theta) + \sqrt{2}\sin(\theta)}{2}\right) = \sin^{-1}\left(\frac{\sqrt{2}}{2}(\cos(\theta) + \sin(\theta))\right) \] ### Step 4: Simplify using trigonometric identities Using the identity \( \sin(a + b) = \sin a \cos b + \cos a \sin b \): \[ \cos(\theta) + \sin(\theta) = \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) \] Thus, we have: \[ y = \sin^{-1}\left(\frac{1}{\sqrt{2}} \cdot \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right)\right) = \theta + \frac{\pi}{4} \] ### Step 5: Express \( \theta \) in terms of \( x \) From our substitution \( x = \cos(2\theta) \), we can express \( \theta \) as: \[ \theta = \frac{1}{2} \cos^{-1}(x) \] So, substituting back: \[ y = \frac{1}{2} \cos^{-1}(x) + \frac{\pi}{4} \] ### Step 6: Differentiate \( y \) with respect to \( x \) Now, we differentiate: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{d}{dx} \left(\cos^{-1}(x)\right) \] Using the derivative of \( \cos^{-1}(x) \): \[ \frac{d}{dx} \left(\cos^{-1}(x)\right) = -\frac{1}{\sqrt{1-x^2}} \] Thus: \[ \frac{dy}{dx} = \frac{1}{2} \left(-\frac{1}{\sqrt{1-x^2}}\right) = -\frac{1}{2\sqrt{1-x^2}} \] ### Final Answer The derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{1-x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The derivative of y=sin^(-1)((3x+sqrt(16-16x^(2)))/(5)) with respect to x at x=(sqrt(3))/(2) , is

The derivative of sin^(-1) (2x sqrt(1-x^(2))) with respect to ltbr. sin^(-1)(3x - 4x^(3)) is

Differentiate sin(-1)[(sqrt(1+x)+sqrt(1-x))/2] with respect to 'x'.

Derivative of sin^(-1) ((1)/(sqrt(x + 1))) with respect to x is

The derivative of sqrt(sqrt(x)+1) is

The derivative of tan^(-1) ((2x)/(1-x^(2))) with respect to cos^(-1) sqrt(1 - x^(2)) is

The derivative of f(x) = (sqrt(x) + (1)/(sqrt(x)))^(2) is

Differentiate sin^(-1)(2x sqrt(1-x^(2))) with respect to x, if '-1

OBJECTIVE RD SHARMA-DIFFERENTIATION-Exercise
  1. The differential coefficient of f(x)=log(logx) with respect to x is

    Text Solution

    |

  2. If y=(tan^- 1)(sqrt(1+x^2)-1)/x, then y'(1) is equal to

    Text Solution

    |

  3. The derivative of sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2)) with respect to ...

    Text Solution

    |

  4. If f(x)=log(a)(log(a)x), then f'(x), is

    Text Solution

    |

  5. The differential coefficient of f(logx) with respect to x, where f(x)=...

    Text Solution

    |

  6. If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

    Text Solution

    |

  7. The value of (d)/(dx)(|x-1|+|x-5|) at x=3, is

    Text Solution

    |

  8. If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x > 0. Find (dy)/(dx)...

    Text Solution

    |

  9. If f'(x)=sin(log x)and y=f((2x+3)/(3-2x)), then dy/dx equals

    Text Solution

    |

  10. If f(x)=(log(cotx)tanx)(log(tanx)cotx)^(-1) +tan^(-1)((4x)/(sqrt(4-x...

    Text Solution

    |

  11. If y=x^(x^(x^(x...^(oo)))) , then x(1-ylogx)(dy)/(dx)

    Text Solution

    |

  12. If sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=loga then (dy)/(dx) equals

    Text Solution

    |

  13. If y=sec^-1([sqrtx+1]/[sqrtx-1])+sin^-1([sqrtx-1]/[sqrtx+1]), then dy/...

    Text Solution

    |

  14. If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2, then x^3y(dy)/(dx)=

    Text Solution

    |

  15. y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy...

    Text Solution

    |

  16. If y=int(0)^(x) f(t)sin{k(x-t)} dt, then (d^(2)y)/(dx^(2))+k^(2) y equ...

    Text Solution

    |

  17. If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}|, where p i...

    Text Solution

    |

  18. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  19. If y^2=a x^2+b x+c , then y^3(d^2y)/(dx^2) is (a) a constant (b) a fun...

    Text Solution

    |

  20. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |