Home
Class 12
MATHS
The derivative of sin^(-1)((sqrt(1+x)+sq...

The derivative of `sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2))` with respect to x is

A

`-(1)/(2sqrt(1-x^(2)))`

B

`(1)/(2sqrt(1-x^(2)))`

C

`(2)/(sqrt(1-x^(2)))`

D

`(-2)/(sqrt(1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin^{-1}\left(\frac{\sqrt{1+x} + \sqrt{1-x}}{2}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Rewrite the function Let: \[ y = \sin^{-1}\left(\frac{\sqrt{1+x} + \sqrt{1-x}}{2}\right) \] ### Step 2: Substitute \( x \) with \( \cos(2\theta) \) To simplify the expression, we can use the substitution: \[ x = \cos(2\theta) \] Then, we can express \( \sqrt{1+x} \) and \( \sqrt{1-x} \): \[ \sqrt{1+x} = \sqrt{1 + \cos(2\theta)} = \sqrt{2\cos^2(\theta)} = \sqrt{2} \cos(\theta) \] \[ \sqrt{1-x} = \sqrt{1 - \cos(2\theta)} = \sqrt{2\sin^2(\theta)} = \sqrt{2} \sin(\theta) \] ### Step 3: Substitute back into the function Now substituting these into our expression for \( y \): \[ y = \sin^{-1}\left(\frac{\sqrt{2}\cos(\theta) + \sqrt{2}\sin(\theta)}{2}\right) = \sin^{-1}\left(\frac{\sqrt{2}}{2}(\cos(\theta) + \sin(\theta))\right) \] ### Step 4: Simplify using trigonometric identities Using the identity \( \sin(a + b) = \sin a \cos b + \cos a \sin b \): \[ \cos(\theta) + \sin(\theta) = \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) \] Thus, we have: \[ y = \sin^{-1}\left(\frac{1}{\sqrt{2}} \cdot \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right)\right) = \theta + \frac{\pi}{4} \] ### Step 5: Express \( \theta \) in terms of \( x \) From our substitution \( x = \cos(2\theta) \), we can express \( \theta \) as: \[ \theta = \frac{1}{2} \cos^{-1}(x) \] So, substituting back: \[ y = \frac{1}{2} \cos^{-1}(x) + \frac{\pi}{4} \] ### Step 6: Differentiate \( y \) with respect to \( x \) Now, we differentiate: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{d}{dx} \left(\cos^{-1}(x)\right) \] Using the derivative of \( \cos^{-1}(x) \): \[ \frac{d}{dx} \left(\cos^{-1}(x)\right) = -\frac{1}{\sqrt{1-x^2}} \] Thus: \[ \frac{dy}{dx} = \frac{1}{2} \left(-\frac{1}{\sqrt{1-x^2}}\right) = -\frac{1}{2\sqrt{1-x^2}} \] ### Final Answer The derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{1-x^2}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Differentiate sin(-1)[(sqrt(1+x)+sqrt(1-x))/2] with respect to 'x'.

The derivative of sqrt(sqrt(x)+1) is

Knowledge Check

  • The derivative of y=sin^(-1)((3x+sqrt(16-16x^(2)))/(5)) with respect to x at x=(sqrt(3))/(2) , is

    A
    -2
    B
    2
    C
    -4
    D
    does not exist
  • The derivative of sin^(-1) (2x sqrt(1-x^(2))) with respect to ltbr. sin^(-1)(3x - 4x^(3)) is

    A
    ` (2)/(3)`
    B
    `(3)/(2)`
    C
    `(1)/(2)`
    D
    1
  • Derivative of sin^(-1) ((1)/(sqrt(x + 1))) with respect to x is

    A
    `(1)/(sqrt(x)(1 + x))`
    B
    `(-2)/(sqrt(x)(1 +x))`
    C
    ` (-1)/(2sqrt(x)(1 +x))`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Differentiate sin^(-1)(2x sqrt(1-x^(2))) with respect to x, if '-1

    the derivation of tan^(-1) "" ((sqrt(1+x^2)-1)/(x)) with respect to tan^(-1) "" ((2x sqrt(1-x^2))/(1-2x^2)) at x=0 ,is

    The derivative of tan^(-1)""(sqrt(1+x^(2)-1))/(x) with respect to tan^(-1)2x(sqrt(1-x^(2)))/(1-2x^(2)) at x=0 is

    The derivative of tan^(-1) ((2x)/(1-x^(2))) with respect to cos^(-1) sqrt(1 - x^(2)) is

    The derivative of f(x) = (sqrt(x) + (1)/(sqrt(x)))^(2) is