Home
Class 12
MATHS
If f(x)=sqrt(x^(2)+9)," then "lim(xto4) ...

If `f(x)=sqrt(x^(2)+9)," then "lim_(xto4) (f(x)-f(4))/(x-4)` has the value

A

`5//4`

B

`-4//5`

C

`4//5`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

We have,
`f(x)=sqrt(x^(2)+9)`
`implies" "f'(x)=(x)/(sqrt(x^(2)+9))`
Now,
`underset(xto4)lim(f(x)-f(4))/(x-4)=f'(4)" "["By def. of derivative"]`
`implies" "underset(xto4)lim(f(x)-f(4))/(x-4)=(4)/(sqrt(4^(2)+9))=(4)/(5)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sqrt(x^(2)+9), write the value of (lim)_(x rarr4)(f(x)-f(4))/(x-4)

If F(x)=sqrt(9-x^(2)) , then what is lim_(xto1) (F(x)-F(1))/(x-1) equal to?

If lim_( xto 2 ) (f(x) -f(2))/( x-2) exist ,then

If f (x) = x^(4) + 2x^(3) , them lim_(x to 2) (f(x) - f(2))/(x - 2) is equal to

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If F(x)=sqrt(9-x^(2)), then what is lim_(x rarr1)(F(x)-F(1))/(x-1) equal to