Home
Class 11
MATHS
In the following, perform the indicated ...

In the following, perform the indicated operations and write the result in the form x+iy:
(i) `(5+4i)+(5-4i)`
(ii) `-2i+((3)/(2)-4i)`
(iii) `((1)/(5)+(2)/(5)i)-(4+(5)/(2)i)`
(iv) `3(7+7i)+i(7+7i)`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve each part step by step, ensuring we express the results in the form \( x + iy \). ### (i) \( (5 + 4i) + (5 - 4i) \) 1. **Add the real parts**: \[ 5 + 5 = 10 \] 2. **Add the imaginary parts**: \[ 4i - 4i = 0i \] 3. **Combine the results**: \[ 10 + 0i \] **Final Answer**: \( 10 + 0i \) --- ### (ii) \( -2i + \left(\frac{3}{2} - 4i\right) \) 1. **Identify the real part**: \[ \text{Real part} = \frac{3}{2} \] 2. **Combine the imaginary parts**: \[ -2i - 4i = -6i \] 3. **Combine the results**: \[ \frac{3}{2} - 6i \] **Final Answer**: \( \frac{3}{2} - 6i \) --- ### (iii) \( \left(\frac{1}{5} + \frac{2}{5}i\right) - \left(4 + \frac{5}{2}i\right) \) 1. **Identify the real parts**: \[ \frac{1}{5} - 4 = \frac{1}{5} - \frac{20}{5} = \frac{1 - 20}{5} = -\frac{19}{5} \] 2. **Combine the imaginary parts**: \[ \frac{2}{5}i - \frac{5}{2}i = \frac{2}{5} - \frac{25}{10} = \frac{4 - 25}{10} = -\frac{21}{10}i \] 3. **Combine the results**: \[ -\frac{19}{5} - \frac{21}{10}i \] **Final Answer**: \( -\frac{19}{5} - \frac{21}{10}i \) --- ### (iv) \( 3(7 + 7i) + i(7 + 7i) \) 1. **Distribute \( 3 \)**: \[ 3 \times 7 + 3 \times 7i = 21 + 21i \] 2. **Distribute \( i \)**: \[ i \times 7 + i \times 7i = 7i + 7i^2 \] Since \( i^2 = -1 \): \[ 7i - 7 = -7 + 7i \] 3. **Combine the results**: \[ (21 - 7) + (21i + 7i) = 14 + 28i \] **Final Answer**: \( 14 + 28i \) --- ### Summary of Answers: 1. \( 10 + 0i \) 2. \( \frac{3}{2} - 6i \) 3. \( -\frac{19}{5} - \frac{21}{10}i \) 4. \( 14 + 28i \) ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (e) Short Answer Type Questions|23 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (e) Long Answer Type Questions|3 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (c)|8 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

In the following, perform the indicated operations and write the result in the form x+iy: i^(3)+(6+3i)-(20+5i)+(14+3i) .

In the following, perform the indicated operations and write the result in the form x+iy: sqrt(3)+(sqrt(3)-2i)-(3-2i)

In the following, perform the indicated operations and write the result in the form x+iy: (i) (7-2i)-(3+2i)+(7+8i) (ii) 3-4i+2i-(8+7i) (iii) (7-2i)-(4+i)+(-3+5i)

Perform the indicated operations and write the result in the form x+iy: (i) (-3+2i)+(-6+3i) (ii) ((1)/(2)+(7)/(2)i)-(4+(5)/(2)i) (iii) (1-2i)-i+(4-7i)-2i+(5i+3) .

Write the following in the form x+iy: (i) (2i)^(3) (ii) i^(-35) (iii) (-i)(2i)(-(1)/(8)i)^(3) .

Expand : ( i ) ((3)/(5))^(4) (ii) ((4)/(7))^(5)

Write the following in the form x+iy: (i) (3+2i)(2-i) (ii) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25) . (iii) ((3-2i)(2+3i))/((1+2i)(2-i)) .

Perform the following by the indicated operations. Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : Simply: (i) (sqrt(5)+7i)(sqrt(5)-7i)^(3) (ii) (1+i)(2+3i)(3+4i)(4+5i) (iii) (1+i^(2))+i^(4)+i^(6) .

The from a+ib:(7-i2)-(4+i)+(-3+i5)

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) (2-3i)/(4-i) (ii) (2+3i)/(-5-4i) (iii) (1+i)/(3+i) (iv) (3+2i)/(4-3i)