Home
Class 11
MATHS
Write the following in the form x+iy: ...

Write the following in the form x+iy:
(i) `(2i)^(3)`
(ii) `i^(-35)`
(iii) `(-i)(2i)(-(1)/(8)i)^(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### (i) \( (2i)^3 \) 1. **Calculate \( (2i)^3 \)**: \[ (2i)^3 = 2^3 \cdot i^3 = 8 \cdot i^3 \] 2. **Substitute \( i^3 \)**: Since \( i^3 = i^2 \cdot i = (-1) \cdot i = -i \): \[ 8 \cdot i^3 = 8 \cdot (-i) = -8i \] 3. **Write in the form \( x + iy \)**: \[ -8i = 0 - 8i \] Thus, the answer is \( 0 - 8i \). ### (ii) \( i^{-35} \) 1. **Rewrite \( i^{-35} \)**: \[ i^{-35} = \frac{1}{i^{35}} \] 2. **Express \( i^{35} \)**: Since \( i^4 = 1 \), we can find \( i^{35} \) by reducing the exponent modulo 4: \[ 35 \mod 4 = 3 \quad \Rightarrow \quad i^{35} = i^3 \] 3. **Substitute \( i^3 \)**: \[ i^{35} = -i \] So, \[ i^{-35} = \frac{1}{-i} \] 4. **Multiply numerator and denominator by \( i \)**: \[ i^{-35} = \frac{i}{-i^2} = \frac{i}{1} = i \] 5. **Write in the form \( x + iy \)**: \[ i = 0 + 1i \] Thus, the answer is \( 0 + 1i \). ### (iii) \( (-i)(2i)\left(-\frac{1}{8}i\right)^3 \) 1. **Calculate \( \left(-\frac{1}{8}i\right)^3 \)**: \[ \left(-\frac{1}{8}i\right)^3 = -\frac{1}{8^3}i^3 = -\frac{1}{512}(-i) = \frac{1}{512}i \] 2. **Combine the terms**: \[ (-i)(2i)\left(\frac{1}{512}i\right) \] 3. **Calculate \( (-i)(2i) \)**: \[ (-i)(2i) = -2i^2 = -2(-1) = 2 \] 4. **Now multiply by \( \frac{1}{512}i \)**: \[ 2 \cdot \frac{1}{512}i = \frac{2}{512}i = \frac{1}{256}i \] 5. **Write in the form \( x + iy \)**: \[ \frac{1}{256}i = 0 + \frac{1}{256}i \] Thus, the answer is \( 0 + \frac{1}{256}i \). ### Final Answers: 1. \( (2i)^3 = 0 - 8i \) 2. \( i^{-35} = 0 + 1i \) 3. \( (-i)(2i)\left(-\frac{1}{8}i\right)^3 = 0 + \frac{1}{256}i \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (e) Long Answer Type Questions|3 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (f) Short Answer Type Questions|3 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (d)|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Write the following in the form x+iy: i^(9)+i^(10)+i^(11)+i^(12) .

Write the following in the form of ordered pair : (i) 3-2i (ii) a+bi (iii) -3-2i

Write the following in the form x+iy: (i) (3+2i)(2-i) (ii) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25) . (iii) ((3-2i)(2+3i))/((1+2i)(2-i)) .

Write the following in the form x+iy: (i) i+i^(2)+i^(3)+i^(4) (ii) i^(4)+i^(8)+i^(12)+i^(16) (iii) i+i^(5)+i^(9)+i^(13) (iv) i^(9)+i^(10)+i^(11)+i^(12) .

Express the following in the form of a" "+" "b i : (i) (-5i)(1/8i) (ii) (-i)(2i)(-1/8i)^3

Convert the following in the form of (a+ib) : (i) (1+i)^(4) (ii) (-3+(1)/(2)i)^(3) (iii) (1-i)(3+4i) (iv) (1+i)(1+ 2i)(1+ 3i) (v) (3+5i)/(6-i) (vi) ((2+3i)^(2))/(2+i) (vii) ((1+ i)(2+i))/((3+i)) (viii) (2-i)^(-3)

Express the following in the form of a + ib . (i) ( 1/2 + 3i)^(2) (ii) ( 2+ 3i) ( 2-3i)

Express the following in the form a+ib:(-i)(2i)(-(1)/(8)i)^(3)

Convert the following in the polar form : ( i ) (1+7i)/((2-i)^(2)) (ii) (1+3i)/(1-2i)

Convert each of the following in the form of (a + i b) : (i) 3(1+i)-2(2+3i) (ii) (1)/(4-5i) (iii) (1-2i)^(-2) (iv) (2-3i)/(3+5i) (v) [(1)/(1-2i)+(3)/(1+i)][(3+4i)/(2-4i)]