Home
Class 11
MATHS
Convert each of the following complex nu...

Convert each of the following complex numbers in polar form:
(i) -3
(ii) `sqrt3+i`
(iii) `i`.

Text Solution

AI Generated Solution

The correct Answer is:
To convert the given complex numbers into polar form, we will follow these steps for each complex number: ### (i) Convert -3 to polar form 1. **Identify the complex number**: The complex number is -3, which can be written as -3 + 0i. 2. **Calculate the modulus (r)**: \[ r = |z| = \sqrt{(-3)^2 + 0^2} = \sqrt{9} = 3 \] 3. **Determine the argument (θ)**: - Since -3 lies on the negative x-axis, the angle θ is: \[ \theta = \pi \text{ (or 180 degrees)} \] 4. **Write in polar form**: \[ z = r(\cos \theta + i \sin \theta) = 3(\cos \pi + i \sin \pi) \] ### Polar form of -3: \[ -3 = 3(\cos \pi + i \sin \pi) \] --- ### (ii) Convert \(\sqrt{3} + i\) to polar form 1. **Identify the complex number**: The complex number is \(\sqrt{3} + 1i\). 2. **Calculate the modulus (r)**: \[ r = |z| = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \] 3. **Determine the argument (θ)**: - Using \(\tan \theta = \frac{\text{Imaginary part}}{\text{Real part}} = \frac{1}{\sqrt{3}}\): \[ \theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \text{ (or 30 degrees)} \] 4. **Write in polar form**: \[ z = r(\cos \theta + i \sin \theta) = 2(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}) \] ### Polar form of \(\sqrt{3} + i\): \[ \sqrt{3} + i = 2(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}) \] --- ### (iii) Convert \(i\) to polar form 1. **Identify the complex number**: The complex number is \(0 + 1i\). 2. **Calculate the modulus (r)**: \[ r = |z| = \sqrt{0^2 + 1^2} = \sqrt{1} = 1 \] 3. **Determine the argument (θ)**: - Since \(i\) lies on the positive y-axis, the angle θ is: \[ \theta = \frac{\pi}{2} \text{ (or 90 degrees)} \] 4. **Write in polar form**: \[ z = r(\cos \theta + i \sin \theta) = 1(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}) \] ### Polar form of \(i\): \[ i = 1(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}) \] --- ### Summary of Polar Forms: 1. \(-3 = 3(\cos \pi + i \sin \pi)\) 2. \(\sqrt{3} + i = 2(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6})\) 3. \(i = 1(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2})\) ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (i) Long Answer Type Questions|8 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (j) Long Answer Type Questions|12 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (h) Long Answer Type Questions|7 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Write the following complex numbers in the polar form: 1+i

Write the following complex numbers in the polar form: 1-i

Write the following complex numbers in the polar form: -1-i

Convert each of the following complex numbers into polar form: {:((i),3,(ii),-5,(iii),i,(iv),-2i):}

Express the following complex number in the polar form: (1+i)/(1-i)

Convert of the complex number in the polar form: (i)-3

Convert of the complex number in the polar form: i

Write the following complex numbers in the polar form: -3sqrt(2)+3sqrt(2)i

Convert of the complex number in the polar form: 1-i

Convert of the complex number in the polar form: -1-i