Home
Class 11
MATHS
Give the following in polar form: (i) ...

Give the following in polar form:
(i) `sin120^(@)-icos120^(@)`
(ii) `[2cos210^(@)+isin210^(@))][4(cos120^(@)+isin120^(@))]`
(iii) `[3(cos225^(@)+isin225^(@))][6(cos45^(@)+isin45^(@))]`.

Text Solution

AI Generated Solution

The correct Answer is:
To convert the given expressions into polar form, we will follow the steps outlined in the video transcript. Let's go through each part step by step. ### (i) Convert `sin(120°) - i cos(120°)` into polar form 1. **Rewrite the expression**: We start with the expression: \[ \sin(120°) - i \cos(120°) \] We can use the identity for sine and cosine: \[ \sin(120°) = \cos(90° - 120°) = \cos(30°) \] \[ \cos(120°) = -\sin(90° - 120°) = -\sin(30°) \] Thus, we can rewrite the expression as: \[ \sin(120°) - i \cos(120°) = \cos(30°) + i \sin(30°) \] 2. **Identify the modulus and argument**: The modulus \( r \) is: \[ r = \sqrt{(\cos(30°))^2 + (\sin(30°))^2} = 1 \] The argument \( \theta \) is: \[ \theta = 30° \] 3. **Write in polar form**: Therefore, the polar form is: \[ 1 \cdot (\cos(30°) + i \sin(30°)) = e^{i \cdot 30°} \] ### (ii) Convert `[2cos(210°) + i sin(210°)][4(cos(120°) + i sin(120°)]` into polar form 1. **Convert each part to polar form**: The first part: \[ 2 \cos(210°) + i \sin(210°) = 2 e^{i \cdot 210°} \] The second part: \[ 4 (\cos(120°) + i \sin(120°)) = 4 e^{i \cdot 120°} \] 2. **Multiply the two expressions**: The product is: \[ (2 e^{i \cdot 210°})(4 e^{i \cdot 120°}) = 8 e^{i (210° + 120°)} = 8 e^{i \cdot 330°} \] 3. **Write in polar form**: Therefore, the polar form is: \[ 8 (\cos(330°) + i \sin(330°)) \] ### (iii) Convert `[3(cos(225°) + i sin(225°))][6(cos(45°) + i sin(45°))]` into polar form 1. **Convert each part to polar form**: The first part: \[ 3 (\cos(225°) + i \sin(225°)) = 3 e^{i \cdot 225°} \] The second part: \[ 6 (\cos(45°) + i \sin(45°)) = 6 e^{i \cdot 45°} \] 2. **Multiply the two expressions**: The product is: \[ (3 e^{i \cdot 225°})(6 e^{i \cdot 45°}) = 18 e^{i (225° + 45°)} = 18 e^{i \cdot 270°} \] 3. **Write in polar form**: Therefore, the polar form is: \[ 18 (\cos(270°) + i \sin(270°)) \] ### Final Answers: 1. \( e^{i \cdot 30°} \) 2. \( 8 (\cos(330°) + i \sin(330°)) \) 3. \( 18 (\cos(270°) + i \sin(270°)) \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (j) Long Answer Type Questions|12 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS MULTIPLE CHOICE QUESTION (A)|25 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (i) Short Answer Type Questions|4 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Give the following in polar form sin 120^@-icos120^@

Re [((cos2^(@)+isin2^(@))^(100)(cos5^(@)+isin5^(@))^(200))/((cos10^(@)+isin10^(@))^(126))]

cos510^(@)cos330^(@)+sin390^(@)cos120^(@)

sin120^(@)cos150^(@)-cos240^(@)sin330^(@)

Give the following quotients in polar form: (i) (9(cos90^(@)+isin90^(@)))/(3(cos45^(@)+isin45^(@))) (ii) (7(cos135^(@)+isin135^(@)))/(14(cos90^(@)+isin90^(@))) .

sin120^(@)cos150^(@)-cos240^(@)sin330^(@)=

Give the following products in polar form: [2(cos 210^0+isin210^0)][4(cos120^0+isin120^0)]

Give the following products in polar form: [2(cos0^0+isin0^0][4(cos90^0+isin90^0)]

sin150^(@).cos120^(@)+cos330^(@)*sin660^(@)=-1

Convert the following into polar form : (i) -1+isqrt(3) (ii) 1-i (iii) 1-(1)/(i) (iv) 3-4i (v) sin120^(@)-icos120^(@) (vi) 2