Home
Class 12
MATHS
If x = log(a) bc, y = log(b) ca, z = log...

If x =` log_(a) bc, y = log_(b) ca, z = log_(c)`ab, then the value of `(1)/(1 + x) + (1)/(1 + y) + (1)/(l + z)` will be

A

`x + y + z `

B

1

C

ab + bc + ca

D

abc

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

l=1+log_(a)bc,m=1+log_(b)ca,n=1+log_(c)a then the value of (1)/(l)+(1)/(m)+(1)/(n)-1

If log_(a) bc =x, log_(b) ca=y, log_( c)ab =z , prove that 1/(x+1) + 1/(y+1) + 1/(z+1)=1

Knowledge Check

  • IF x = log_(2a)a, y = log_(3a) 2a , z = log_(4a)3a , then the value of xyz + 1 is

    A
    2yz
    B
    2zx
    C
    xyz
    D
    1
  • If x= log_(2a)a, y= log_(3a)2a, z= log_(4a) 3a , then the value of xyz+1 is

    A
    2yz
    B
    2zx
    C
    xyz
    D
    1
  • If log_(a) bc= x, log_(b) ca= y and log_(c ) ab= z , then the value of (1)/(x+1) + (1)/(y+1) + (1)/(z+1) is equal to

    A
    0
    B
    1
    C
    2
    D
    3
  • Similar Questions

    Explore conceptually related problems

    If =1+log_(a)bc,y=1+log_(b)ca,z=1+log_(c)ab then prove that xyz=xy+yz+zx

    If x=log_(a)(bc),y=log_(b)(ca),z=log_(c)(ab) then (1)/(x+1)+(1)/(y+1)+(1)/(z+1) is equal to

    If log_(a)bc = x, log_(b)ca = y and log_(c)ab = z , then the value of (1)/(x +1) + (1)/(y +1) + (1)/(z+1) is equal to

    If x = 1 + log_(a) bc, y = 1 + log_(b) ca, z = 1 + log_(c) ab, then xy + yz + zx =

    If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to