Home
Class 12
MATHS
If log(x) 2 log((x)/(16)) 2 = log((x)/...

If ` log_(x) 2 log_((x)/(16)) 2 = log_((x)/(64))` 2, then x =

A

4,8

B

2,4

C

8,16

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_x 2 \cdot \log_{(x/16)} 2 = \log_{(x/64)} 2 \), we will follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can express the logarithms in terms of natural logarithms or common logarithms: \[ \log_x 2 = \frac{\log 2}{\log x}, \quad \log_{(x/16)} 2 = \frac{\log 2}{\log (x/16)}, \quad \log_{(x/64)} 2 = \frac{\log 2}{\log (x/64)} \] ### Step 2: Substitute the rewritten logarithms into the equation Substituting these into the original equation gives: \[ \frac{\log 2}{\log x} \cdot \frac{\log 2}{\log (x/16)} = \frac{\log 2}{\log (x/64)} \] ### Step 3: Simplify the equation We can simplify \( \log (x/16) \) and \( \log (x/64) \): \[ \log (x/16) = \log x - \log 16 = \log x - 4 \log 2 \] \[ \log (x/64) = \log x - \log 64 = \log x - 6 \log 2 \] Now, substituting these back into the equation gives: \[ \frac{\log 2}{\log x} \cdot \frac{\log 2}{\log x - 4 \log 2} = \frac{\log 2}{\log x - 6 \log 2} \] ### Step 4: Cancel \(\log 2\) from both sides Assuming \(\log 2 \neq 0\), we can cancel \(\log 2\) from both sides: \[ \frac{1}{\log x} \cdot \frac{1}{\log x - 4 \log 2} = \frac{1}{\log x - 6 \log 2} \] ### Step 5: Cross-multiply to eliminate the fractions Cross-multiplying gives: \[ (\log x - 6 \log 2) = \log x (\log x - 4 \log 2) \] ### Step 6: Expand and rearrange the equation Expanding the right-hand side: \[ \log x - 6 \log 2 = \log^2 x - 4 \log x \log 2 \] Rearranging gives: \[ \log^2 x - 4 \log x \log 2 - \log x + 6 \log 2 = 0 \] ### Step 7: Combine like terms This can be simplified to: \[ \log^2 x - (4 \log 2 + 1) \log x + 6 \log 2 = 0 \] ### Step 8: Solve the quadratic equation Let \( t = \log x \). The equation becomes: \[ t^2 - (4 \log 2 + 1)t + 6 \log 2 = 0 \] Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ t = \frac{(4 \log 2 + 1) \pm \sqrt{(4 \log 2 + 1)^2 - 24 \log 2}}{2} \] ### Step 9: Calculate the discriminant Calculate the discriminant: \[ (4 \log 2 + 1)^2 - 24 \log 2 = 16 \log^2 2 + 8 \log 2 + 1 - 24 \log 2 = 16 \log^2 2 - 16 \log 2 + 1 \] This can be factored or solved directly. ### Step 10: Find the values of \( x \) After solving for \( t \), we will find \( x \) by calculating \( x = 10^t \) or \( x = 2^t \) based on the logarithm base used. ### Final Answer The values of \( x \) will be \( 4 \) and \( 8 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|15 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

If (log_(x)x)(log_(3)2x)(log_(2x)y)=log_(x^(x^(2)) , then what is the value of y ?

If log_(x)2+log_(x^(2))2>1 then x lies

Knowledge Check

  • Find the value of x for log_(x)2, log_(x//16)2 = log-(x//64)2 ,

    A
    4
    B
    4,16
    C
    4,8
    D
    4,8,32
  • If a,b,c are in GP, then log_(a)d, log_(x//16) =2 = log_(x//64) 2:

    A
    4
    B
    4,16
    C
    4,8
    D
    4,8,32
  • If log_(2)x xxlog_(2).(x)/(16)+4=0 , then x=

    A
    `4`
    B
    `-4`
    C
    `(1)/(4)`
    D
    `2`
  • Similar Questions

    Explore conceptually related problems

    If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

    If log_(4) x + log_(8)x^(2) + log_(16)x^(3) = (23)/(2) , then log_(x) 8 =

    If log_(sqrt(2)) sqrt(x) +log_(2) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

    If log_(16x) = 2.5 , then x = ______.

    If log_(16) x + log_(x) x + log_(2) x = 14 , then x =