Home
Class 12
MATHS
Let a,b in R and a^2+ b^2 ne 0 Suppos...

Let a,b in R and `a^2+ b^2 ne 0 `
Suppose `S={z in C : z =(1)/(alpha +I bt ), t in R, t ne 0 } `where `I= sqrt(-1)` if z=x +iy and `ne S,` then (x,y) lies on

A

the circle with radius `1/(2 alpha)` and centre `(1/(2a),(0))` for `a gt 0, b ne 0 `

B

the circle with radius `-1/2a` and centre `(-1/2a,0)` for a `lt 0, b ne 0`

C

the X -axis for `a ne 0, b=0`

D

the` Y-axis for a-0 , b ne 0 `

Text Solution

Verified by Experts

The correct Answer is:
D

Here `x+iy=(1)/(a+ibt)xx(a -ibt)/(a-ibt)`
`therefore x+ iy =(a-ibt)/(a^2+b^2t^2)`
Let `a ne 0, b ne 0 `
`therefore x =(a)/(a^2+b^2t^2)and y = (-bt )/(a^2+b^2t^2)`
`rArr y/x = (-bt)/(a)rArr t= (ay)/(bx)`
On puttting `x=(a)/(a^2+b^2 t^2)`we get
`x(a^2+b^2,(a^2y^2)/(b^2 x^2))=arArr a^2(x^2 + y^2)`
or `x^2+y^2 -x/a=0`
or `x^2+y^2 -x/a=0`
of `(x -1/(2a))^2+y^2 =(1)/(4a^2)`
`therefore` Option (a) is correct
For `a ne 0 and b=0`
`x+ iy = 1/a rArr x =1/a, y=0`
`rArr` z lies on X-axis.
`therefore` Option ( c) is correct
For a=0 and `b ne 0, x+ iy = (1)/(ibt)rArrx=0 , y=-1/(bt)`
`rArr` z lies on Y -axis
`therefore` Option (d) is correct
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    IIT JEEĀ PREVIOUS YEAR|Exercise TOPIC 4 ROTATION OF A COMPLEX NUMBER (FILL IN THE BLANKS )|3 Videos
  • COMPLEX NUMBERS

    IIT JEEĀ PREVIOUS YEAR|Exercise TOPIC 4 ROTATION OF A COMPLEX NUMBER (ANALYTICAL & DESCRIPTIVE QUESTIONS)|7 Videos
  • COMPLEX NUMBERS

    IIT JEEĀ PREVIOUS YEAR|Exercise TOPIC 4 ROTATION OF A COMPLEX NUMBER (OBJECTIVE QUESTION I)(ONLY ONE CORRECT OPTION)|6 Videos
  • CIRCLE

    IIT JEEĀ PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos
  • DEFINITE INTEGRATION

    IIT JEEĀ PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos

Similar Questions

Explore conceptually related problems

If Re((z-1)/(2z+i))=1, where z=x+iy ,then the point (x,y) lies on a

If z = x iy , xy ne 0 satisfy the equation z^2 i overline z = 0 , then |z^2| equal to

Knowledge Check

  • Let a,b in R and a^(2) + b^(2) ne 0 . Suppose S = { z in C: z = (1)/(a+ ibt),t in R, t ne 0} , where i= sqrt(-1) . If z = x + iy and z in S, then (x,y) lies on

    A
    the circle with radius `(1)/(2a)` and centre `((1)/(2a),0)` for `a gt 0 be ne 0`
    B
    the circle with radius `-(1)/(2a)` and centre `(-(1)/(2) ,0) a lt 0, b ne 0`
    C
    the axis for `a ne 0, b =0`
    D
    the y-axis for `a = 0, bne 0`
  • Let 0 ne a, 0 ne b in R . Suppose S={z in C, z=1/(a+ibt)t in R, t ne 0} , where i=sqrt(-1) . If z=x+iy and z in S , then (x,y) lies on

    A
    on the circle with radius `1/(2a)` and center `(-1/(2a),0)`
    B
    on the circle with radius `1/(2a)` and center `(1/(2a),0)`
    C
    on the `x`-axis
    D
    on the y-axis.
  • If x, y, a, b in R, a ne 0 and (a + ib) (x + iy) = (a^(2) + b^(2))i , then (x, y) equals

    A
    (a, b)
    B
    (a, 0)
    C
    (0, b)
    D
    (b, a)
  • Similar Questions

    Explore conceptually related problems

    Let z = x + iy be a non - zero complex number such that z^(2) = I |z|^(2) , where I = sqrt(-1) then z lies on the :

    If z+sqrt(2)|z+1|+i=0 and z=x+iy then

    If z ne 0 lies on the circle |z-1| = 1 and omega = 5//z , then omega lies on

    If |(z +4)/(2z -1)|=1, where z =x +iy. Then the point (x,y) lies on a:

    omega = alpha + i beta , beta ne 0 and ( omega - bar (omega)z)/(1 - z) is real, then z will satisfy :