Home
Class 12
MATHS
If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/...

If `z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5` , then prove that `I m(z)=0.`

A

`R(z) gt 0 and I(z) gt 0`

B

`I(z)=0`

C

`R(z) lt 0 and I(z) gt 0`

D

`R(z)-3`

Text Solution

Verified by Experts

The correct Answer is:
B

Given `z= (sqrt(3)/2+ i/ 2)^5+(sqrt(3)/2-i/2)^5`
`because ` Euler's form of
`(sqrt(3)/2+i/2=( cos""pi/6+ I sin pi/6 ) = e^i(pi//6)`
`sqrt(3)/2- i/2= cos ((-pi )/(6)+isin ""pi/6)=e^(i(pi//6))`
So, `z= (e^(i pi//6))^5+(e^(-ipi//6))^5=e^(i(5pi)/6)+e^(-i(5pi)/6)`
`=(cos""(5pi)/6+ i sin ""(5pi)/6)+(cos ""(5pi)/6- isin "" (5pi)/6)`
`= 2 cos""(5 pi)/6 " "[ because e^(i theta) = cos theta + i sin theta]`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 4 ROTATION OF A COMPLEX NUMBER (OBJECTIVE QUESTION II)(ONE OR MORE THAN ONE CORRECT OPTION)|2 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 4 ROTATION OF A COMPLEX NUMBER (FILL IN THE BLANKS )|3 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 ARGUMENT OF A COMPLEX NUMBER (OBJECTIVE QUESTIONS II)(ANALYTICAL & DESCRIPTIVE QUESTIONS )|1 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos

Similar Questions

Explore conceptually related problems

If z=((sqrt(3))/(2)+(i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then prove that Im(z)=0

If z=((sqrt(3))/(2)+(i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then prove that Im(z)=0

(sqrt3/2+i/2)^5 - (sqrt3/2-i/2)^5=

If z=((sqrt(5))/(2)+(i)/(2))^(5)+((sqrt(5))/(2)-(i)/(2))^(5) , the prove that Im(z)=0 .

If z=((sqrt(3))/(2)+(1)/(2)i)^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then (a) im(z)=0 (b) Re(z)>0,Im(z)>0(c)Re(z)>0,Im(z)<0 (d) Re(z)=3

If z=[((sqrt(3))/(2))+(i)/(2)]^(5)+[((sqrt(3))/(2))-(i)/(2)]^(5) then Re(z)=0 b.Im(z)=0 c.Re(z)>0 d.Re(z)>0,Im(z)<0

If z=((sqrt3)/(2)+(i)/(2))^(107)+((sqrt3)/(2)-(i)/(2))^(107), then what is the imaginary pary of z equal to?

If z=(sqrt(3)+i)/(2) the (iz)^(59)=