Home
Class 12
MATHS
Prove that 2^k(n,0)(n,k)-2^(k-1)(n,1)(n-...

Prove that `2^k(n,0)(n,k)-2^(k-1)(n,1)(n-1,k-1)+2^(k-2)(n,2)(n-2,k-2)-.....+(-1)^k(n,k)(n-k,0)=(n,k)`.

Text Solution

Verified by Experts

To show that
`2^(k).""^(n)C_(0).""^(n)C_(k)-2^(k-1).""^(n)C_(1).""^(n-1)C_(k-1)+2^(k-2).""^(n)C_(2).""^(n)C_(k-2)-...+(-1)^(k)""^(n)C_(k)""^(n-k)C_(0)=""^(n)C_(k)`
Taking LHS
`2^(k).""^(n)C_(0).""^(n)C_(k)-2^(k-1).""^(n)C_(1).""^(n-1)C_(k-1) +... +(-1)^(k)""^(n)C_(k).""^(n-k)C_(0)`
`=sum_(r=0)^(k)(-1)^(r).2^(k-r).""^(n)C_(r)""^(n-r)C_(k-r)`
`= sum _(r=0)^(k)(-1)^(r)2^(k-r).(n!)/(r!(n-r)!).((n-r)!)/((k-r)!(n-k)!)`
`= sum _(r=0)^(k)(-1)^(r).2^(k-r).(n!)/(r!(n-r)!k!).(k!)/(r!(k-r)!)`
`= sum _(r=0)^(k)(-1)^(r).2^(k-r). ""^(n)C_(k).""^(n)C_(r)=2^(k).""^(n)C_(k){sum _(r=0)^(k)(-1)^(r).(1)/(2^(r))""^(k)C_(r)}`
`=2^(k).""^(n)C_(k)(1-(1)/(2))^(k)=""^(n)C_(k)=RHS `
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 2 Properties of Binomial Coefficent Objective Questions I (Only one correct option) (Fill in the Blanks)|1 Videos
  • AREA

    IIT JEE PREVIOUS YEAR|Exercise AREA USING INTEGRATION|55 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos

Similar Questions

Explore conceptually related problems

If n and k are positive integers, show that 2^k(nC 0)(n k)-2^(k-1)(nC1)(n-1Ck-1)+2^(k-2)(nC2)((n-2k-2))_dot-...+(-1)^k(nCk)+(n-kC0)=(nC k)w h e r e(n C k) stands for ^n C_kdot

2 ^ (k) ([n0]) ([nk]) - 2 ^ (k-1) ([n1]) ([n-1k-1]) + 2 ^ (k-2) ([n2]) ([nk-2]) - ,,, + (- 1) ^ (k) ([nk]) ([nk]) ([n0]) ([n0])

Knowledge Check

  • The value of the expression 2^(k)((n),(0))((n),(k))-2^(k-1)((n),(1))((n-1),(k-1))+2^(k-2)((n),(2))((n-2),(k-2))….+(-1)^(k)((n),(k))((n-k),(0)) i

    A
    `((n),(k))`
    B
    `((n+1)/(k))`
    C
    `((n+1),(k+1))`
    D
    `((n-1),(k-1))`
  • Similar Questions

    Explore conceptually related problems

    prove that sum_(k=1)^(n)k2^(-k)=2[1-2^(-n)-n*2^(-(n+1)))

    Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

    Prove that : sum_(i=0)^r((n+i),(k))=((n+r+1),(k+1))-((n),(k+1))

    If Delta_k=|(1,n,n),(2(k-1),n(n+1),n(n-1)),(4k(k^2-1),n(n+1)(n^2-4),n(n+2)(n^2-1))|, then f(n)=sum_(k=1)^n Delta_k+n is a polynomial of degree (i)0 (ii)1 (iii)6 (iv)7

    sum_(k=1)^(oo)k(1-(1)/(n))^(k-1)=a*n(n-1)bn(n+1)c*n^(2)d.(n+1)^(2)

    For the natural numbers n,k,<=tT(n,k)=(1)/((n+1)!)+(1)/((n+2)!)+(1)/((n+3)!)+......(1)/((n+k)!)

    Prove that sum_(k=1)^(n-1) ""^(n)C_(k)[cos k x. cos (n+k)x+sin(n-k)x.sin(2n-k)x]=(2^(n)-2)cos nx .