Home
Class 12
MATHS
If sin^(-1) ((3 sin 2 theta)/(5+4 cos 2 ...

If `sin^(-1) ((3 sin 2 theta)/(5+4 cos 2 theta))=2 tan^(-1)x`, then `x=`

A

`tan 3 theta`

B

`3 tan theta`

C

`1/3 tan theta`

D

`3 cot theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} \left( \frac{3 \sin 2\theta}{5 + 4 \cos 2\theta} \right) = 2 \tan^{-1} x \), we can follow these steps: ### Step 1: Rewrite the left-hand side We start with the expression inside the inverse sine function: \[ \sin 2\theta = 2 \sin \theta \cos \theta \] and \[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1 \] Thus, we can express \( \sin 2\theta \) and \( \cos 2\theta \) in terms of \( \tan \theta \). ### Step 2: Substitute \( \sin 2\theta \) and \( \cos 2\theta \) Using the double angle formulas: \[ \sin 2\theta = \frac{2\tan \theta}{1 + \tan^2 \theta} \] and \[ \cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \] we can rewrite the expression: \[ \frac{3 \sin 2\theta}{5 + 4 \cos 2\theta} = \frac{3 \cdot \frac{2\tan \theta}{1 + \tan^2 \theta}}{5 + 4 \cdot \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}} \] ### Step 3: Simplify the denominator The denominator becomes: \[ 5 + 4 \cdot \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{5(1 + \tan^2 \theta) + 4(1 - \tan^2 \theta)}{1 + \tan^2 \theta} = \frac{5 + 5\tan^2 \theta + 4 - 4\tan^2 \theta}{1 + \tan^2 \theta} = \frac{9 + \tan^2 \theta}{1 + \tan^2 \theta} \] ### Step 4: Substitute back into the expression Now we have: \[ \frac{3 \cdot \frac{2\tan \theta}{1 + \tan^2 \theta}}{\frac{9 + \tan^2 \theta}{1 + \tan^2 \theta}} = \frac{6\tan \theta}{9 + \tan^2 \theta} \] ### Step 5: Set the equation Now we set the equation: \[ \sin^{-1} \left( \frac{6\tan \theta}{9 + \tan^2 \theta} \right) = 2 \tan^{-1} x \] ### Step 6: Use the identity for \( \tan^{-1} \) Using the identity \( \tan(2A) = \frac{2\tan A}{1 - \tan^2 A} \), we can express \( \sin^{-1} y = 2 \tan^{-1} x \) as: \[ \sin(2 \tan^{-1} x) = \frac{2x}{1+x^2} \] Thus, we equate: \[ \frac{6\tan \theta}{9 + \tan^2 \theta} = \frac{2x}{1+x^2} \] ### Step 7: Cross-multiply Cross-multiplying gives: \[ 6\tan \theta(1 + x^2) = 2x(9 + \tan^2 \theta) \] ### Step 8: Solve for \( x \) Rearranging and solving for \( x \) gives: \[ x = \frac{3\tan \theta}{9 - 3\tan \theta} \] ### Conclusion Thus, the value of \( x \) is: \[ x = \frac{3\tan \theta}{9 - 3\tan \theta} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks))|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos

Similar Questions

Explore conceptually related problems

If (1)/(2)sin^(-1)[(3sin2 theta)/(5+4cos2 theta)]=tan^(-1)x,thenx=(a)tan3 theta(b)3tan theta(c)((1)/(3))tan theta(d)3cot theta

If 1/2 sin^(-1)((3sin2theta)/(5+4cos2theta))=(pi)/4 , then tan theta is equal to

Knowledge Check

  • If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x, " then " x =

    A
    `tan 3 theta`
    B
    `3 tan theta`
    C
    `(1//3) tan theta`
    D
    `3 cot theta`
  • If 1/2 sin^(-1) [(3 sin 2theta)/(5+4 cos2theta)] = tan^(-1)x then x=

    A
    `tan 3theta`
    B
    `3 tan theta`
    C
    `(1//3)tan theta`
    D
    `3 cot theta`
  • If (3sin 2 theta)/(5+4cos2theta)=1 , then the value of tan theta is equal to

    A
    1
    B
    `1//3`
    C
    3
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    (sin theta+sin2 theta)/(1+cos theta+cos2 theta)=tan theta

    (sin theta+sin2 theta)/(1+cos theta+cos2 theta)=tan theta

    The value of tan^(-1)((x cos theta)/(1-x sin theta))-cot^(-1)((cos theta)/(x-sin theta)) is 2 theta(b)theta (c) (theta)/(2)(d) independent of theta

    (1+sin2 theta-cos2 theta)/(1+sin2 theta+cos2 theta)=tan theta

    (sin3 theta-sin theta sin^(2)(2 theta))/(sin theta+sin2 theta cos theta)=cos x then x=