Home
Class 12
MATHS
If sin^(-1)(x/13) + cosec^(-1) (13/12)= ...

If `sin^(-1)(x/13) + cosec^(-1) (13/12)= pi/2`, then the value of x is

A

5

B

4

C

12

D

11

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}\left(\frac{x}{13}\right) + \csc^{-1}\left(\frac{13}{12}\right) = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Rewrite the Cosecant Inverse We know that \( \csc^{-1}(y) = \sin^{-1}\left(\frac{1}{y}\right) \). Therefore, we can rewrite \( \csc^{-1}\left(\frac{13}{12}\right) \) as: \[ \csc^{-1}\left(\frac{13}{12}\right) = \sin^{-1}\left(\frac{12}{13}\right) \] ### Step 2: Substitute Back into the Equation Now substitute this back into the original equation: \[ \sin^{-1}\left(\frac{x}{13}\right) + \sin^{-1}\left(\frac{12}{13}\right) = \frac{\pi}{2} \] ### Step 3: Use the Identity Using the identity \( \sin^{-1}(a) + \sin^{-1}(b) = \frac{\pi}{2} \) implies that: \[ a + b = 1 \] In our case: \[ \frac{x}{13} + \frac{12}{13} = 1 \] ### Step 4: Solve for x Now, we can solve for \( x \): \[ \frac{x + 12}{13} = 1 \] Multiplying both sides by 13 gives: \[ x + 12 = 13 \] Subtracting 12 from both sides results in: \[ x = 1 \] ### Conclusion Thus, the value of \( x \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks))|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)(x/5) + cosec^(-1) (5/4) = pi/2 , then the value of x is

If sin^(-1) . (x)/(5) +cosec^(-1). (5/3)=pi/2 , then x=

If sin^(-1)((12)/(13))+sec^(-1)((13)/(x))=(pi)/(2) then x=

If sin^(-1)x+csc^(-1)x+tan^(-1)x=(5 pi)/(4) then the value

If cosec(pi)/(4)-"sin"(pi)/(3)=x , then the value of x is