Home
Class 12
MATHS
Let f:R rarr Rbe differentiable at x = 0...

Let `f:R rarr R`be differentiable at x = 0. If f(0) = 0 and `f'(0)=2`, then the value of
`lim_(xrarr0)(1)/(x)[f(x)+f(2x)+f(3x)+….+f(2015x)]` is

A

2015

B

0

C

`2015xx2016`

D

`2015xx2014`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start by analyzing the given function \( f \) which is differentiable at \( x = 0 \) with \( f(0) = 0 \) and \( f'(0) = 2 \). We need to evaluate the limit: \[ L = \lim_{x \to 0} \frac{1}{x} [f(x) + f(2x) + f(3x) + \ldots + f(2015x)] \] ### Step 1: Rewrite the expression inside the limit We can express the limit as: \[ L = \lim_{x \to 0} \frac{f(x) + f(2x) + f(3x) + \ldots + f(2015x)}{x} \] ### Step 2: Apply L'Hôpital's Rule Since both the numerator and denominator approach \( 0 \) as \( x \to 0 \), we can apply L'Hôpital's Rule. We differentiate the numerator and denominator: - The derivative of the denominator \( x \) is \( 1 \). - The derivative of the numerator \( f(x) + f(2x) + f(3x) + \ldots + f(2015x) \) requires the chain rule: \[ \frac{d}{dx}[f(kx)] = f'(kx) \cdot k \] Thus, the derivative of the numerator is: \[ f'(x) + 2f'(2x) + 3f'(3x) + \ldots + 2015f'(2015x) \] ### Step 3: Substitute back into the limit Now we can rewrite the limit using the derivatives: \[ L = \lim_{x \to 0} \left( f'(x) + 2f'(2x) + 3f'(3x) + \ldots + 2015f'(2015x) \right) \] ### Step 4: Evaluate the limit as \( x \to 0 \) As \( x \to 0 \), \( f'(kx) \) approaches \( f'(0) \) for all \( k \). Since \( f'(0) = 2 \), we have: \[ L = f'(0) \left( 1 + 2 + 3 + \ldots + 2015 \right) \] ### Step 5: Calculate the sum of the series The sum of the first \( n \) natural numbers is given by the formula: \[ \sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \] For \( n = 2015 \): \[ 1 + 2 + 3 + \ldots + 2015 = \frac{2015 \times 2016}{2} \] ### Step 6: Substitute back into the limit Now substituting back into our limit expression: \[ L = 2 \cdot \frac{2015 \times 2016}{2} = 2015 \times 2016 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{2015 \times 2016} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=k,k!=0, then the value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

Let f'(x) be continuous at x=0 and f'(0)=4 then value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

Knowledge Check

  • For a differentiable function f(x) , if f'(2)=2 and f'(3)=1 , then the value of lim_(xrarr0)(f(x^(2)+x+2)-f(2))/(f(x^(2)-x+3)-f(3)) is equal to

    A
    2
    B
    1
    C
    `-2`
    D
    `-1`
  • If f(x)=int_1^xsin^2(t/2)dt , then the value of lim_(xrarr0)(f'(pi+x)-f(x))/x is equal to

    A
    `1/4`
    B
    `1/2`
    C
    `3/4`
    D
    1
  • Let f''(x) be continuous at x = 0 and f''(0)=4 , Then value of lim_(x to 0)(2f(x) -3f(2x) + f(4x))/x^(2) is:

    A
    11
    B
    2
    C
    12
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

    Let f be differentiable at x=0 and f'(0)=1 Then lim_(h rarr0)(f(h)-f(-2h))/(h)=

    If f(x) is differentiable and strictly increasing function,then the value of lim_(x rarr0)(f(x^(2))-f(x))/(f(x)-f(0)) is 1 (b) 0(c)-1 (d) 2

    Let f is twice differerntiable on R such that f (0)=1, f'(0) =0 and f''(0) =-1, then for a in R, lim _(xtooo) (f((a)/(sqrtx)))^(x)=

    If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is