Home
Class 12
MATHS
If int (sin2x-cos 2x)dx=(1)/(sqrt2) sin(...

If `int (sin2x-cos 2x)dx=(1)/(sqrt2) sin(2x-a)+b`, then the values of a & b are

A

`a=-(5pi)/(4), b in R`

B

`a=(5pi)/(4), b in R`

C

`a inR, b=(5pi)/(4)`

D

`b=-(5pi)/(4), a in R`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (\sin 2x - \cos 2x) \, dx \) and find the values of \( a \) and \( b \) in the equation \[ \int (\sin 2x - \cos 2x) \, dx = \frac{1}{\sqrt{2}} \sin(2x - a) + b, \] we will follow these steps: ### Step 1: Integrate the expression We start by integrating the expression \( \sin 2x - \cos 2x \). \[ \int (\sin 2x - \cos 2x) \, dx = \int \sin 2x \, dx - \int \cos 2x \, dx. \] ### Step 2: Calculate the integral of \( \sin 2x \) Using the formula \( \int \sin kx \, dx = -\frac{1}{k} \cos kx + C \): \[ \int \sin 2x \, dx = -\frac{1}{2} \cos 2x. \] ### Step 3: Calculate the integral of \( \cos 2x \) Using the formula \( \int \cos kx \, dx = \frac{1}{k} \sin kx + C \): \[ \int \cos 2x \, dx = \frac{1}{2} \sin 2x. \] ### Step 4: Combine the results Now, substituting back into our integral: \[ \int (\sin 2x - \cos 2x) \, dx = -\frac{1}{2} \cos 2x - \frac{1}{2} \sin 2x + C. \] ### Step 5: Factor out \( -\frac{1}{2} \) We can factor out \( -\frac{1}{2} \): \[ \int (\sin 2x - \cos 2x) \, dx = -\frac{1}{2} (\cos 2x + \sin 2x) + C. \] ### Step 6: Rewrite using sine addition formula We can rewrite \( \cos 2x + \sin 2x \) using the sine addition formula. We know: \[ \cos \theta = \frac{1}{\sqrt{2}}, \quad \sin \theta = \frac{1}{\sqrt{2}} \quad \text{for } \theta = \frac{\pi}{4}. \] Thus, \[ \cos 2x + \sin 2x = \sqrt{2} \sin\left(2x + \frac{\pi}{4}\right). \] So, we have: \[ -\frac{1}{2} (\cos 2x + \sin 2x) = -\frac{1}{2} \cdot \sqrt{2} \sin\left(2x + \frac{\pi}{4}\right) + C. \] ### Step 7: Simplify the expression This gives us: \[ \int (\sin 2x - \cos 2x) \, dx = -\frac{1}{\sqrt{2}} \sin\left(2x + \frac{\pi}{4}\right) + C. \] ### Step 8: Compare with the given equation Now, we compare this with the given equation: \[ \frac{1}{\sqrt{2}} \sin(2x - a) + b. \] From the comparison, we see that: 1. The coefficient of \( \sin \) matches. 2. The angle \( 2x + \frac{\pi}{4} \) corresponds to \( 2x - a \). This implies: \[ -a = \frac{\pi}{4} \implies a = -\frac{\pi}{4}. \] ### Step 9: Identify \( b \) The constant \( b \) corresponds to the integration constant \( C \), which can be any real number. ### Final Answer Thus, the values of \( a \) and \( b \) are: \[ a = -\frac{\pi}{4}, \quad b \in \mathbb{R}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

If intsqrt (1+sin2x)dx=sqrt (2)sin(x+a)+b , then find values of a and b .

If int (sin 2x - cos 2x) dx = 1/(sqrt((2))) sin (2x - a) + b ,then a = ......., b =.......... .

Knowledge Check

  • int(sin x - cos x)/(sqrt(2x)) dx =

    A
    `"log"{(sin x + cos x) + sqrt(sin 2x)}`
    B
    `- log {sin x + cos x + sqrt(sin 2x)}`
    C
    `log (sin x - cos x + sqrt(sin 2x))`
    D
    `- log [sin x - cos x + sqrt(sin 2x)]`
  • Similar Questions

    Explore conceptually related problems

    int_( then )^( If )(sin2x-cos2x)dx=(1)/(sqrt(2))sin(2x-a)+b

    int sin x sqrt(1-cos2x)dx

    int sin x sqrt(1-cos2x)dx

    int((sin x+cos x)/(sqrt(sin2x))dx

    int_( then a=)^( If )(sin2x-cos2x)dx=(1)/(sqrt(2))sin(2x-a)+C

    The relation int(sin2x+cos2x)=(1)/(sqrt(2))sin(2x-a)+c is true for

    int sin x sqrt(1+cos2x)dx