Home
Class 12
MATHS
int sqrt(1+sin 2x)dx=...

`int sqrt(1+sin 2x)dx=`

A

`sinx+cosx+c AA x in R`

B

`sinx-cos x+cAA x in R`

C

`sin x-cosx+c, x in [(-pi)/(4),(3pi)/(4)]`

D

`cosx-sinx+c, x in [(3pi)/(4),(7pi)/(4)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 + \sin 2x} \, dx \), we will follow these steps: ### Step 1: Simplify the expression inside the square root We know that \( \sin 2x = 2 \sin x \cos x \). Thus, we can rewrite the integral as: \[ \int \sqrt{1 + 2 \sin x \cos x} \, dx \] ### Step 2: Use the identity for sine Using the identity \( \sin^2 x + \cos^2 x = 1 \), we can express \( 1 \) as \( \cos^2 x + \sin^2 x \). Therefore, we have: \[ 1 + 2 \sin x \cos x = \cos^2 x + \sin^2 x + 2 \sin x \cos x = (\sin x + \cos x)^2 \] So, we can rewrite the integral as: \[ \int \sqrt{(\sin x + \cos x)^2} \, dx \] ### Step 3: Remove the square root Since the square root of a square gives us the absolute value, we have: \[ \int |\sin x + \cos x| \, dx \] ### Step 4: Determine the intervals for the absolute value To evaluate the integral, we need to determine where \( \sin x + \cos x \) is positive or negative. We can find the zeros of \( \sin x + \cos x = 0 \): \[ \tan x = -1 \implies x = \frac{3\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] This means \( \sin x + \cos x \) is positive in the intervals: - \( (-\frac{\pi}{4}, \frac{3\pi}{4}) \) - \( (\frac{7\pi}{4}, \frac{11\pi}{4}) \) And negative in: - \( (\frac{3\pi}{4}, \frac{7\pi}{4}) \) ### Step 5: Split the integral based on intervals Now we can split the integral based on these intervals. For example, if we consider the interval from \( 0 \) to \( 2\pi \): \[ \int_0^{\frac{3\pi}{4}} (\sin x + \cos x) \, dx + \int_{\frac{3\pi}{4}}^{\frac{7\pi}{4}} -(\sin x + \cos x) \, dx + \int_{\frac{7\pi}{4}}^{2\pi} (\sin x + \cos x) \, dx \] ### Step 6: Evaluate each integral 1. **First Integral:** \[ \int_0^{\frac{3\pi}{4}} (\sin x + \cos x) \, dx = \left[-\cos x + \sin x\right]_0^{\frac{3\pi}{4}} = \left(-\cos \frac{3\pi}{4} + \sin \frac{3\pi}{4}\right) - \left(-\cos 0 + \sin 0\right) \] \[ = \left(-(-\frac{1}{\sqrt{2}}) + \frac{1}{\sqrt{2}}\right) - (1 + 0) = 2\cdot\frac{1}{\sqrt{2}} - 1 = \sqrt{2} - 1 \] 2. **Second Integral:** \[ \int_{\frac{3\pi}{4}}^{\frac{7\pi}{4}} -(\sin x + \cos x) \, dx = -\left[-\cos x + \sin x\right]_{\frac{3\pi}{4}}^{\frac{7\pi}{4}} = \left(-\cos \frac{7\pi}{4} + \sin \frac{7\pi}{4}\right) - \left(-\cos \frac{3\pi}{4} + \sin \frac{3\pi}{4}\right) \] \[ = \left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right) - \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) = -2\cdot\frac{1}{\sqrt{2}} = -\sqrt{2} \] 3. **Third Integral:** \[ \int_{\frac{7\pi}{4}}^{2\pi} (\sin x + \cos x) \, dx = \left[-\cos x + \sin x\right]_{\frac{7\pi}{4}}^{2\pi} = \left(-\cos 2\pi + \sin 2\pi\right) - \left(-\cos \frac{7\pi}{4} + \sin \frac{7\pi}{4}\right) \] \[ = (1 - 0) - \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right) = 1 \] ### Step 7: Combine the results Now we can combine the results of the three integrals: \[ \text{Total Integral} = (\sqrt{2} - 1) + (-\sqrt{2}) + 1 = 0 \] ### Final Result Thus, the value of the integral \( \int \sqrt{1 + \sin 2x} \, dx \) over the interval \( [0, 2\pi] \) is: \[ \int \sqrt{1 + \sin 2x} \, dx = 0 + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int sqrt(1+sin2x)dx

int sqrt(1+sin2x)dx

int sqrt(1+sin2x)dx

int sqrt(1+sin2x)dx

int sqrt(1-sin x)dx

If x in(-(pi)/(4),(pi)/(4)), then int sqrt(1-sin2x)dx=

find the value of: int sqrt(1-sin2x)dx

Evaluate: int sqrt(1-sin2x)dx

int sqrt(1+sin x)dx=2(sin((x)/(2))-cos((x)/(2)))+c=2sqrt(1-sin x)+c

Evaluate: (i) sqrt(1-cos2x)dx (ii) int sqrt(1+sin2x)dx