Home
Class 12
MATHS
The value of the integral int(-2)^(2)(1+...

The value of the integral `int_(-2)^(2)(1+2sin x)e^(|x|)dx` is equal to

A

0

B

`e^(2)-1`

C

`2(e^(2)-1)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-2}^{2} (1 + 2 \sin x) e^{|x|} \, dx \), we can follow these steps: ### Step 1: Analyze the function The function \( f(x) = (1 + 2 \sin x) e^{|x|} \) is composed of two parts: \( e^{|x|} \) and \( (1 + 2 \sin x) \). ### Step 2: Determine the nature of the function - The function \( e^{|x|} \) is an even function because \( e^{|-x|} = e^{|x|} \). - The function \( 2 \sin x \) is an odd function because \( 2 \sin(-x) = -2 \sin x \). - Therefore, \( f(-x) = (1 - 2 \sin x) e^{|x|} \). ### Step 3: Check if \( f(x) \) is odd or even We can express \( f(-x) \): \[ f(-x) = (1 - 2 \sin x) e^{|x|} = e^{|x|} - 2 \sin x \cdot e^{|x|} \] This shows that \( f(-x) \neq f(x) \) and \( f(-x) \neq -f(x) \), indicating that \( f(x) \) is neither even nor odd. ### Step 4: Split the integral Given the properties of even and odd functions, we can split the integral: \[ \int_{-2}^{2} f(x) \, dx = \int_{-2}^{0} f(x) \, dx + \int_{0}^{2} f(x) \, dx \] ### Step 5: Evaluate the integral from 0 to 2 For \( x \geq 0 \), \( |x| = x \): \[ \int_{0}^{2} (1 + 2 \sin x) e^{x} \, dx \] ### Step 6: Evaluate the integral from -2 to 0 For \( x < 0 \), \( |x| = -x \): \[ \int_{-2}^{0} (1 + 2 \sin x) e^{-x} \, dx \] ### Step 7: Combine the results Using the symmetry of the integrals, we can evaluate: \[ \int_{-2}^{0} (1 + 2 \sin x) e^{-x} \, dx = \int_{0}^{2} (1 + 2 \sin x) e^{x} \, dx \] ### Step 8: Final calculation The total integral becomes: \[ 2 \int_{0}^{2} (1 + 2 \sin x) e^{x} \, dx \] ### Step 9: Solve the integral Now we can compute: \[ \int (1 + 2 \sin x) e^{x} \, dx = e^{x} (1 + 2 \sin x) - \int 2 \cos x e^{x} \, dx \] Using integration by parts for \( \int 2 \cos x e^{x} \, dx \). ### Step 10: Evaluate limits Finally, we evaluate the definite integral from 0 to 2 and compute the result.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|30 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-2)^(2)|1-x^(2)|dx is

The value of the integral int_(0)^(pi) | sin 2x| dx is

Knowledge Check

  • The value of the integral int_(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    A
    `a pi`
    B
    `2 a pi`
    C
    `(a pi)/(2)`
    D
    indenpedent of a
  • The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

    A
    `e^(a^(2))`
    B
    `a`
    C
    `e^(-a^(2))`
    D
    `(a)/(2)`
  • The value of the integral int_(-pi//2)^(pi//2) (sin^2 x)/(1+e^x ) dx is

    A
    `(pi)/(6) `
    B
    `(pi)/(4)`
    C
    `(pi)/(2)`
    D
    `(pi^2)/(2)`
  • Similar Questions

    Explore conceptually related problems

    The value of the integral int_(a)^(a+pi/2)(|sin x|+|cos x|)dx, is

    The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

    The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

    The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

    The value of the integral int_(0)^(pi//2) sin^(6) x dx , is