Home
Class 11
MATHS
Using binomial theorem, evaluate : (99)^...

Using binomial theorem, evaluate : `(99)^5`

Text Solution

AI Generated Solution

To evaluate \( 99^5 \) using the binomial theorem, we can express \( 99 \) as \( 100 - 1 \). Hence, we need to evaluate \( (100 - 1)^5 \). ### Step-by-Step Solution: 1. **Identify the Binomial Expansion**: The binomial theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|17 Videos
  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise EXERCISE 8.2|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT ENGLISH|Exercise All Questions|75 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem, evaluate : (96)^3

Using binomial theorem, evaluate : (102)^5

Using binomial theorem, evaluate : (999)^(3) .

Using binomial theorem, evaluate : (101)^4

Using Binomial theorem, evaluate (0.99)^15 correct to four places of decimal.

Using the binomial theorem, evaluate (102)^5 .

Byusing binomial theorem evaluate (i) (107)^(5) , (ii) (55)^(3)

Using binomial theorem compute : (99)^5

Using binomial theorem, the value of (0.999)^3 correct to 3 decimal places is

Using binomial theorem compute : (10. 1)^5