Home
Class 12
CHEMISTRY
Lithium metal has a body centred cubic l...

Lithium metal has a body centred cubic lattice structure with edge length of unit cell 353 pm . Calculate the density of the lithium metal. [Given : Atomic mass of Li = `7 g mol^(-1) , N_A = 6.022 xx 10^(23)` atom `mol^(-1)`)

Text Solution

Verified by Experts

`d= (ZM)/(a^3N_A)`
Given : `Z = 2` for BCC
`M = 7 g mol^(-1)`
`a = 352 p m = 352 xx 10^(-10) cm`
`N_A = 6.022 xx 10^(23) "atoms" mol^(-1)`
`d = (2"atoms" xx 7 g mol^(-1))/((352 xx 10^(-10) cm)^(3) xx (6.022 xx 10^(23) "atoms mol"^(-1)))`
`= 0.53 g cm^(-3)`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • II PUC ANNUAL EXAMINATION 2019

    OSWAAL PUBLICATION|Exercise PART - C|8 Videos
  • II PUC ANNUAL EXAMINATION 2019

    OSWAAL PUBLICATION|Exercise PART - D|10 Videos
  • II PUC ANNUAL EXAMINATION 2019

    OSWAAL PUBLICATION|Exercise PART - D|10 Videos
  • HALOALKANES & HALOARENES

    OSWAAL PUBLICATION|Exercise Topic 2 (Properties of Haloarenes and Haloalkanes) (Long Answer Type Questions - II)|1 Videos
  • II PUC APRIL - 2016

    OSWAAL PUBLICATION|Exercise PART - D|27 Videos

Similar Questions

Explore conceptually related problems

Answer any five of the following questions. Lithium metal has a body centred cubic lattice structure with edge length of edge unit cell 352 pm. Calculate the density of lithium metal. [Given: Atomic mass of Li = 7 "gmol"^(-1) , N_(A) = 6.022 xx 10^(23) atoms mol ""^(-1) ].

(a) Calculate the packing efficiency in F.C.C. cubic lattice. (b) Calcium metal crystallises in face centered cubiv lattice with edge length of 0.556 nm. Calculate the density of the metal. [Atomic mass of calcium 40 g/mol. N_(A) = 6.022 xx 10^(23) atoms/mol.]

Knowledge Check

  • Lithium forms body centred cubic structure. The length of the side of its unit cell is 351 pm. Atomic radius of the lithium will be :

    A
    152pm
    B
    75 pm
    C
    300 pm
    D
    240 pm
  • Aluminium metal has face centred cubic (fcc) structure. The number of 'Al' atoms per unit cell of the lattice is

    A
    2
    B
    1
    C
    4
    D
    6
  • Similar Questions

    Explore conceptually related problems

    Calcium metal crystallises in a face centered cubic lattice with edge length of 0.556nm. Calculate the density of the metal. [Atomic mass of calcium 40 g/mol] [N_(A) = 6.022 xx 10^(23) " atoms/ mol"]

    Silver metal crystallises with a face centred cubic lattice. The length of unit cell is formed to be 4.077 xx 10^(-8) cm. Calculate atomic radius and density of silver. (Atomic mass of Ag = 108 u, N_(A) = 6.023 xx 10^(23) mol^(-1) ).

    Silver forms a ccp lattice. The edge length of its unit cell is 408.6 pm. Calculate the density silver (N_A=6.022xx10^(23) , Atomic mass of Ag=108 gmol^(-1) )

    b) An element crystallizes in a foc lattice. The edge length of the unit cell is 400 pm. Calculate the density of the unit cell. ("molar mass"="60 g mol"^(-1)) ("Avogadro number"=6.02 xx 10^(23))

    Silver forms a ccp lattice. The edge length of its unit cell is 408.6 pm. Calculate the density of silver. ( N_(A)=6.022xx10^(23) , Atomic mass of Ag=108 gmol^(-1) ).

    Copper crystallizes into a fcc lattice with edge length 3.61 xx 10^(-8) cm. Calculate the density of the crystal (Atomic mass of copper = 63.5 g/mol and Avogadro number = 6.022 xx 10^(23) mol^(-1) )