Home
Class 12
MATHS
If int(ln2)^(x) (e^(x) - 1)^(-1) dx = ln...

If `int_(ln2)^(x) (e^(x) - 1)^(-1) dx = ln'3/2` then what is the value of x ?

A

`e^(2)`

B

`1/e`

C

`ln 4`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral and find the value of \( x \) such that: \[ \int_{\ln 2}^{x} \frac{1}{e^t - 1} \, dt = \frac{\ln 3}{2} \] ### Step 1: Rewrite the Integral The integral can be rewritten as: \[ \int_{\ln 2}^{x} (e^t - 1)^{-1} \, dt = \int_{\ln 2}^{x} \frac{1}{e^t - 1} \, dt \] ### Step 2: Change of Variables Let \( u = e^t - 1 \). Then, differentiating gives: \[ du = e^t \, dt \quad \Rightarrow \quad dt = \frac{du}{e^t} = \frac{du}{u + 1} \] ### Step 3: Change the Limits of Integration When \( t = \ln 2 \): \[ u = e^{\ln 2} - 1 = 2 - 1 = 1 \] When \( t = x \): \[ u = e^x - 1 \] Thus, the integral becomes: \[ \int_{1}^{e^x - 1} \frac{1}{u} \cdot \frac{1}{u + 1} \, du \] ### Step 4: Partial Fraction Decomposition We can express \( \frac{1}{u(u + 1)} \) as: \[ \frac{1}{u(u + 1)} = \frac{A}{u} + \frac{B}{u + 1} \] Multiplying through by \( u(u + 1) \) gives: \[ 1 = A(u + 1) + Bu \] Setting \( u = 0 \): \[ 1 = A(0 + 1) \quad \Rightarrow \quad A = 1 \] Setting \( u = -1 \): \[ 1 = B(-1) \quad \Rightarrow \quad B = -1 \] Thus, \[ \frac{1}{u(u + 1)} = \frac{1}{u} - \frac{1}{u + 1} \] ### Step 5: Evaluate the Integral Now we can evaluate the integral: \[ \int_{1}^{e^x - 1} \left( \frac{1}{u} - \frac{1}{u + 1} \right) du = \left[ \ln |u| - \ln |u + 1| \right]_{1}^{e^x - 1} \] This simplifies to: \[ \left[ \ln(e^x - 1) - \ln(e^x) \right] - \left[ \ln(1) - \ln(2) \right] \] ### Step 6: Substitute Limits Evaluating the limits gives: \[ \ln(e^x - 1) - x - (0 - \ln 2) = \ln(e^x - 1) - x + \ln 2 \] ### Step 7: Set Equal to \( \frac{\ln 3}{2} \) Set the expression equal to \( \frac{\ln 3}{2} \): \[ \ln(e^x - 1) - x + \ln 2 = \frac{\ln 3}{2} \] ### Step 8: Rearranging Rearranging gives: \[ \ln(e^x - 1) = x - \ln 2 + \frac{\ln 3}{2} \] ### Step 9: Exponentiate Both Sides Exponentiating both sides yields: \[ e^x - 1 = e^{x - \ln 2 + \frac{\ln 3}{2}} \] ### Step 10: Solve for \( x \) This leads to: \[ e^x - 1 = \frac{3}{2} e^{x - \ln 2} = \frac{3}{2} \cdot \frac{e^x}{2} \] From here, we can simplify and solve for \( x \): \[ e^x - 1 = \frac{3}{4} e^x \] This simplifies to: \[ \frac{1}{4} e^x = 1 \quad \Rightarrow \quad e^x = 4 \quad \Rightarrow \quad x = \ln 4 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\ln 4} \]

To solve the problem, we need to evaluate the integral and find the value of \( x \) such that: \[ \int_{\ln 2}^{x} \frac{1}{e^t - 1} \, dt = \frac{\ln 3}{2} \] ### Step 1: Rewrite the Integral The integral can be rewritten as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

int_(2)^(3)log(x-1)/(x-1)dx

int_(1)^(3)(log x)/((x+1)^(2))dx

Knowledge Check

  • int_(ln 2)^x (e^x-1)^(-1) dx=In 3/2 then what is the value of x?

    A
    `e^2`
    B
    `1/e`
    C
    `ln 4`
    D
    `(-1)/e`
  • int e^(3 log x) . (x^4 + 1)^(-1) dx =

    A
    `"log" (x^4 + 1)`
    B
    `3log (x^4 + 1)`
    C
    `-log (x^4 + 1)`
    D
    `1/4 "log" (x^4 + 1)`
  • int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

    A
    log 6
    B
    `log((2)/(3))`
    C
    `log((3)/(2))`
    D
    log 8
  • Similar Questions

    Explore conceptually related problems

    int_(1)^(3)(log x)/((x+1)^(2))dx

    Statement I int_(0)^(1)2^(x)x^(2)dx=(2)/(ln2)-(4)/((ln2)^(2))+(2)/((ln2)^(3)) Statement II int_(0)^(1)e^(x)(x-1)^(n)dx=16-6e then the value of n is 3 .

    int(x-1)/((x-3)(x-2))dx=A ln(x-3)+B ln(x-2)+c , then find the value of A+B

    int_(1)^(e) log (x) dx=

    int_(1)^(2)x log x dx =