Home
Class 12
MATHS
I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tan...

`I_(1) = int_(pi/6)^(pi/3) (dx)/(1+sqrt(tanx))` and `I_(2) = (sqrt(sinx)dx)/(sqrt(sinx) + sqrt(cosx))`
What is `I_(1) - I_(2)` equal to ?

A

0

B

`2I_(1)`

C

`pi`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( I_1 \) and \( I_2 \) and then find \( I_1 - I_2 \). ### Step 1: Evaluate \( I_1 \) Given: \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}} \] We can rewrite \( \tan x \) in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x} \] Thus, we have: \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\frac{\sin x}{\cos x}}} = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \frac{\sqrt{\sin x}}{\sqrt{\cos x}}} \] Now, multiply the numerator and denominator by \( \sqrt{\cos x} \): \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x} \, dx}{\sqrt{\cos x} + \sqrt{\sin x}} \] ### Step 2: Use the symmetry property of definite integrals Using the property of definite integrals: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] Here \( a = \frac{\pi}{6} \) and \( b = \frac{\pi}{3} \), thus \( a + b = \frac{\pi}{2} \). We can rewrite \( I_1 \): \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos(\frac{\pi}{2} - x)} \, dx}{\sqrt{\cos(\frac{\pi}{2} - x)} + \sqrt{\sin(\frac{\pi}{2} - x)}} \] Since \( \cos(\frac{\pi}{2} - x) = \sin x \) and \( \sin(\frac{\pi}{2} - x) = \cos x \), we have: \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x} \, dx}{\sqrt{\sin x} + \sqrt{\cos x}} \] ### Step 3: Evaluate \( I_2 \) Given: \[ I_2 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x} \, dx}{\sqrt{\sin x} + \sqrt{\cos x}} \] ### Step 4: Compare \( I_1 \) and \( I_2 \) From the previous steps, we find that: \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x} \, dx}{\sqrt{\cos x} + \sqrt{\sin x}} \quad \text{and} \quad I_2 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x} \, dx}{\sqrt{\sin x} + \sqrt{\cos x}} \] ### Step 5: Calculate \( I_1 - I_2 \) Since both integrals \( I_1 \) and \( I_2 \) are equal: \[ I_1 = I_2 \] Thus: \[ I_1 - I_2 = 0 \] ### Final Result \[ I_1 - I_2 = 0 \]

To solve the problem, we need to evaluate \( I_1 \) and \( I_2 \) and then find \( I_1 - I_2 \). ### Step 1: Evaluate \( I_1 \) Given: \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sqrt(sinx)/(sqrt(sinx)+sqrt(cosx))dx

int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to

Knowledge Check

  • I_(1) = int_(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I_(2) = (sqrt(sinx)dx)/(sqrt(sinx) + sqrt(cosx)) What is I_(1) equal to ?

    A
    `pi//24`
    B
    `pi//18`
    C
    `pi//12`
    D
    `pi//6`
  • int_(0)^(pi)(cosx)/(sqrt(4+3sinx))dx is

    A
    rational
    B
    irrational
    C
    0
    D
    `int_(-1)^(1)xdx`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^(pi//2)(dx)/((1+sqrt(tanx)))=(pi)/(4)

    int_(0)^(pi//2)(sinx)/(sqrt(1+cosx))dx

    int_(0)^(pi//2)(sqrt(sinx))/((sqrt(sinx)+sqrt(cosx)))dx=(pi)/(4)

    I=int (sinx+cosx)/sqrt(1-sin2x) dx

    int(1)/(sinx+sqrt3cosx)dx=

    int_(-pi//4)^(pi//4)|sinx|dx=(2-sqrt(2))