Home
Class 12
MATHS
Consider is int(0)^(pi//2) ln (sinx)dx e...

Consider is `int_(0)^(pi//2) ln (sinx)dx` equal to ?
What is `int_(0)^(pi//2)ln (sinx) dx` equal to ?

A

`4I`

B

`2I`

C

`I`

D

`I//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx \), we will use a symmetry property of definite integrals. ### Step-by-step Solution: 1. **Define the Integral**: Let \( I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx \). 2. **Use the Property of the Integral**: We can use the property of definite integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] For our case, we let \( a = \frac{\pi}{2} \). Thus, \[ I = \int_{0}^{\frac{\pi}{2}} \ln(\sin(\frac{\pi}{2} - x)) \, dx \] 3. **Simplify the Integral**: We know that \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \). Therefore, we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \ln(\cos x) \, dx \] 4. **Combine the Two Integrals**: Now we have two expressions for \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx \] \[ I = \int_{0}^{\frac{\pi}{2}} \ln(\cos x) \, dx \] Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx + \int_{0}^{\frac{\pi}{2}} \ln(\cos x) \, dx \] 5. **Use Logarithmic Properties**: Using the property of logarithms, we can combine the integrals: \[ 2I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x \cos x) \, dx \] We know that \( \sin x \cos x = \frac{1}{2} \sin(2x) \), so: \[ 2I = \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2} \sin(2x)\right) \, dx \] 6. **Split the Integral**: This can be split into two parts: \[ 2I = \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2}\right) \, dx + \int_{0}^{\frac{\pi}{2}} \ln(\sin(2x)) \, dx \] The first integral evaluates to: \[ \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2}\right) \, dx = \ln\left(\frac{1}{2}\right) \cdot \frac{\pi}{2} = -\frac{\pi}{2} \ln(2) \] 7. **Evaluate the Second Integral**: For the second integral, we can change the variable \( u = 2x \), which gives \( du = 2dx \) or \( dx = \frac{du}{2} \). The limits change from \( 0 \) to \( \pi \): \[ \int_{0}^{\frac{\pi}{2}} \ln(\sin(2x)) \, dx = \frac{1}{2} \int_{0}^{\pi} \ln(\sin u) \, du \] We know that \( \int_{0}^{\pi} \ln(\sin u) \, du = -\pi \ln(2) \) (a known result). 8. **Combine Everything**: Thus, \[ 2I = -\frac{\pi}{2} \ln(2) + \frac{1}{2} \left(-\pi \ln(2)\right) \] Simplifying gives: \[ 2I = -\frac{\pi}{2} \ln(2) - \frac{\pi}{2} \ln(2) = -\pi \ln(2) \] Therefore, \[ I = -\frac{\pi}{2} \ln(2) \] ### Final Result: \[ \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln(2) \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx \), we will use a symmetry property of definite integrals. ### Step-by-step Solution: 1. **Define the Integral**: Let \( I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx \). 2. **Use the Property of the Integral**: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

Consider is int_(0)^(pi//2) ln (sinx)dx equal to ? What is int_(0)^(pi//2) ln (cos x) dx equal to ?

What is int_(0)^(pi/2) ln(tanx) dx equal to ?

What is int_(-pi//2)^(pi//2) |sinx| dx equal to ?

What is int_(0)^(pi/(2))e^(ln(cosx))dx equal to?

What is int_(-pi/2)^(pi/2) x sinx dx equal to ?

int_(0)^(pi//2)log (sec x) dx=

What is int_(0)^(2pi) sqrt(1+ sin'x/2) dx equal to ?

int_(0)^(pi) x log sinx\ dx

What is int_(0)^(pi//2) sin 2x ln (cot x) dx equal to ?

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi)((pi-x)...

    Text Solution

    |

  2. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi) (dx)/(1...

    Text Solution

    |

  3. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  4. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  5. What is int(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal t...

    Text Solution

    |

  6. The area of a triangle, whose verticles are (3,4) , (5,2) and the p...

    Text Solution

    |

  7. प्रथम चतुर्थांश में वृत्त x^(2)+y^(2)=4, रेखा x=sqrt(3)y एवं x-अक्ष द...

    Text Solution

    |

  8. Find the area of the region in the first quadrant enclosed by x-a xi s...

    Text Solution

    |

  9. Consider the curves y= sin x and y = cos x. What is the area of the re...

    Text Solution

    |

  10. Consider the curves y = sin x and y = cos x . What is the area of ...

    Text Solution

    |

  11. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  12. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  13. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  14. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  15. The area of the figure formed by the lines ax + by +c = 0, ax - by + c...

    Text Solution

    |

  16. The value of int(a)^(b) (x^(7) + sinx)/(cosx)dx where a + b = 0 i...

    Text Solution

    |

  17. The value of integral underset(a)overset(b)int(|x|)/(x)dx, a lt b is :

    Text Solution

    |

  18. int(0)^(2pi) sin^(5) (x/4) dx is equal to

    Text Solution

    |

  19. int(-1)^(1)x|x|dx is equal to

    Text Solution

    |

  20. The area bounded by the coordinate axes and the curve sqrt(x) + sqrt(y...

    Text Solution

    |