Home
Class 12
MATHS
Consider is int(0)^(pi//2) ln (sinx)dx e...

Consider is `int_(0)^(pi//2) ln (sinx)dx` equal to ?
What is `int_(0)^(pi//2)ln (sinx) dx` equal to ?

A

`4I`

B

`2I`

C

`I`

D

`I//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx \), we will use a symmetry property of definite integrals. ### Step-by-step Solution: 1. **Define the Integral**: Let \( I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx \). 2. **Use the Property of the Integral**: We can use the property of definite integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] For our case, we let \( a = \frac{\pi}{2} \). Thus, \[ I = \int_{0}^{\frac{\pi}{2}} \ln(\sin(\frac{\pi}{2} - x)) \, dx \] 3. **Simplify the Integral**: We know that \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \). Therefore, we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \ln(\cos x) \, dx \] 4. **Combine the Two Integrals**: Now we have two expressions for \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx \] \[ I = \int_{0}^{\frac{\pi}{2}} \ln(\cos x) \, dx \] Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx + \int_{0}^{\frac{\pi}{2}} \ln(\cos x) \, dx \] 5. **Use Logarithmic Properties**: Using the property of logarithms, we can combine the integrals: \[ 2I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x \cos x) \, dx \] We know that \( \sin x \cos x = \frac{1}{2} \sin(2x) \), so: \[ 2I = \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2} \sin(2x)\right) \, dx \] 6. **Split the Integral**: This can be split into two parts: \[ 2I = \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2}\right) \, dx + \int_{0}^{\frac{\pi}{2}} \ln(\sin(2x)) \, dx \] The first integral evaluates to: \[ \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2}\right) \, dx = \ln\left(\frac{1}{2}\right) \cdot \frac{\pi}{2} = -\frac{\pi}{2} \ln(2) \] 7. **Evaluate the Second Integral**: For the second integral, we can change the variable \( u = 2x \), which gives \( du = 2dx \) or \( dx = \frac{du}{2} \). The limits change from \( 0 \) to \( \pi \): \[ \int_{0}^{\frac{\pi}{2}} \ln(\sin(2x)) \, dx = \frac{1}{2} \int_{0}^{\pi} \ln(\sin u) \, du \] We know that \( \int_{0}^{\pi} \ln(\sin u) \, du = -\pi \ln(2) \) (a known result). 8. **Combine Everything**: Thus, \[ 2I = -\frac{\pi}{2} \ln(2) + \frac{1}{2} \left(-\pi \ln(2)\right) \] Simplifying gives: \[ 2I = -\frac{\pi}{2} \ln(2) - \frac{\pi}{2} \ln(2) = -\pi \ln(2) \] Therefore, \[ I = -\frac{\pi}{2} \ln(2) \] ### Final Result: \[ \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln(2) \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx \), we will use a symmetry property of definite integrals. ### Step-by-step Solution: 1. **Define the Integral**: Let \( I = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx \). 2. **Use the Property of the Integral**: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

What is int_(0)^(pi/(2))e^(ln(cosx))dx equal to?

int_(0)^(pi) x log sinx\ dx

Knowledge Check

  • Consider is int_(0)^(pi//2) ln (sinx)dx equal to ? What is int_(0)^(pi//2) ln (cos x) dx equal to ?

    A
    `I//2`
    B
    `I`
    C
    `2I`
    D
    `4I`
  • What is int_(0)^(pi/2) ln(tanx) dx equal to ?

    A
    `ln 2`
    B
    `-ln 2`
    C
    `0`
    D
    None of these
  • What is int_(-pi//2)^(pi//2) |sinx| dx equal to ?

    A
    `2`
    B
    `1`
    C
    `pi`
    D
    `0`
  • Similar Questions

    Explore conceptually related problems

    int_0^(pi//2) log sin x dx is equal to

    What is int_(-pi/2)^(pi/2) x sinx dx equal to ?

    int_(0)^(pi//2)log (sec x) dx=

    What is int_(0)^(2pi) sqrt(1+ sin'x/2) dx equal to ?

    What is int_(0)^(pi//2) sin 2x ln (cot x) dx equal to ?