Home
Class 12
MATHS
int(-1)^(1)x|x|dx is equal to...

`int_(-1)^(1)x|x|dx` is equal to

A

`0`

B

`2/3`

C

`2`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{1} x |x| \, dx \), we need to consider the definition of the absolute value function \( |x| \). ### Step-by-Step Solution: 1. **Identify the behavior of \( |x| \)**: - For \( x < 0 \), \( |x| = -x \). - For \( x \geq 0 \), \( |x| = x \). 2. **Split the integral**: We can split the integral at \( x = 0 \): \[ \int_{-1}^{1} x |x| \, dx = \int_{-1}^{0} x |x| \, dx + \int_{0}^{1} x |x| \, dx \] 3. **Evaluate the integral from -1 to 0**: For \( x \) in the interval \([-1, 0]\): \[ |x| = -x \implies x |x| = x(-x) = -x^2 \] Thus, \[ \int_{-1}^{0} x |x| \, dx = \int_{-1}^{0} -x^2 \, dx \] 4. **Integrate**: \[ \int -x^2 \, dx = -\frac{x^3}{3} \] Evaluating from -1 to 0: \[ \left[-\frac{x^3}{3}\right]_{-1}^{0} = \left[-\frac{0^3}{3}\right] - \left[-\frac{(-1)^3}{3}\right] = 0 - \left[\frac{1}{3}\right] = -\frac{1}{3} \] 5. **Evaluate the integral from 0 to 1**: For \( x \) in the interval \([0, 1]\): \[ |x| = x \implies x |x| = x \cdot x = x^2 \] Thus, \[ \int_{0}^{1} x |x| \, dx = \int_{0}^{1} x^2 \, dx \] 6. **Integrate**: \[ \int x^2 \, dx = \frac{x^3}{3} \] Evaluating from 0 to 1: \[ \left[\frac{x^3}{3}\right]_{0}^{1} = \left[\frac{1^3}{3}\right] - \left[\frac{0^3}{3}\right] = \frac{1}{3} - 0 = \frac{1}{3} \] 7. **Combine the results**: Now we combine the two results: \[ \int_{-1}^{1} x |x| \, dx = \left(-\frac{1}{3}\right) + \left(\frac{1}{3}\right) = 0 \] ### Final Answer: \[ \int_{-1}^{1} x |x| \, dx = 0 \]

To solve the integral \( \int_{-1}^{1} x |x| \, dx \), we need to consider the definition of the absolute value function \( |x| \). ### Step-by-Step Solution: 1. **Identify the behavior of \( |x| \)**: - For \( x < 0 \), \( |x| = -x \). - For \( x \geq 0 \), \( |x| = x \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)|x|dx is equal to

The value of int_(-1)^(1)(x|x|)dx is equal to

Knowledge Check

  • The value of int_(-1)^(1)(x|x|)dx is equal to

    A
    1
    B
    `(1)/(2)`
    C
    0
    D
    None of these
  • What is int_(-1)^(1) x|x| dx equal to ?

    A
    `2`
    B
    `1`
    C
    `0`
    D
    `-1`
  • int_(-1)^1|1+x|dx is equal to

    A
    `-2`
    B
    0
    C
    2
    D
    4
  • Similar Questions

    Explore conceptually related problems

    int_(1)^(2)|x-1|dx is equal to

    int_(0)^(4)|x-1| dx is equal to

    int_(-1)^2|x|^3dx is equal to

    int _(-1)^(1)| 1 - x| dx is equal to

    Let [x] denote the greatest integer less than or equal to x, then the value of the integral int_(-1)^(1)(|x|-2[x])dx is equal to