Home
Class 12
MATHS
int(0)^(pi/2) |sinx - cosx |dx is equal ...

`int_(0)^(pi/2) |sinx - cosx |dx` is equal to

A

`0`

B

`2(sqrt(2) -1)`

C

`2sqrt(2)`

D

`2(sqrt(2) + 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} |\sin x - \cos x| \, dx \), we will follow these steps: ### Step 1: Determine where \( \sin x - \cos x \) changes sign We need to find the points where \( \sin x = \cos x \). This occurs when: \[ \tan x = 1 \quad \Rightarrow \quad x = \frac{\pi}{4} \] Thus, we have two intervals to consider: 1. From \( 0 \) to \( \frac{\pi}{4} \) 2. From \( \frac{\pi}{4} \) to \( \frac{\pi}{2} \) ### Step 2: Analyze the sign of \( \sin x - \cos x \) - For \( x \in [0, \frac{\pi}{4}) \), \( \sin x < \cos x \) so \( \sin x - \cos x < 0 \) and \( |\sin x - \cos x| = -(\sin x - \cos x) = \cos x - \sin x \). - For \( x \in (\frac{\pi}{4}, \frac{\pi}{2}] \), \( \sin x > \cos x \) so \( \sin x - \cos x > 0 \) and \( |\sin x - \cos x| = \sin x - \cos x \). ### Step 3: Set up the integral We can split the integral into two parts: \[ \int_{0}^{\frac{\pi}{2}} |\sin x - \cos x| \, dx = \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin x - \cos x) \, dx \] ### Step 4: Evaluate the first integral Calculate \( \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx \): \[ \int (\cos x - \sin x) \, dx = \sin x + \cos x \] Evaluating from \( 0 \) to \( \frac{\pi}{4} \): \[ \left[ \sin x + \cos x \right]_{0}^{\frac{\pi}{4}} = \left( \sin \frac{\pi}{4} + \cos \frac{\pi}{4} \right) - \left( \sin 0 + \cos 0 \right) = \left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) - (0 + 1) = \sqrt{2} - 1 \] ### Step 5: Evaluate the second integral Calculate \( \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin x - \cos x) \, dx \): \[ \int (\sin x - \cos x) \, dx = -\cos x - \sin x \] Evaluating from \( \frac{\pi}{4} \) to \( \frac{\pi}{2} \): \[ \left[ -\cos x - \sin x \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \left( -\cos \frac{\pi}{2} - \sin \frac{\pi}{2} \right) - \left( -\cos \frac{\pi}{4} - \sin \frac{\pi}{4} \right) = \left( 0 - 1 \right) - \left( -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) = -1 + \sqrt{2} \] ### Step 6: Combine the results Now, we combine both parts: \[ \int_{0}^{\frac{\pi}{2}} |\sin x - \cos x| \, dx = (\sqrt{2} - 1) + (-1 + \sqrt{2}) = 2\sqrt{2} - 2 \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} |\sin x - \cos x| \, dx = 2(\sqrt{2} - 1) \]

To solve the integral \( \int_{0}^{\frac{\pi}{2}} |\sin x - \cos x| \, dx \), we will follow these steps: ### Step 1: Determine where \( \sin x - \cos x \) changes sign We need to find the points where \( \sin x = \cos x \). This occurs when: \[ \tan x = 1 \quad \Rightarrow \quad x = \frac{\pi}{4} \] Thus, we have two intervals to consider: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos