Home
Class 12
MATHS
If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(...

If `f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo` then

A

`log_(e )((1+x)/(1-x))`

B

`log_(e )(1+x) `

C

`(1+x)log_(e )(1+x)`- x

D

`log_(e )(1-x)`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - II(A) (CLASS WORK)|40 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • MATHEMATICAL REASONING

    AAKASH SERIES|Exercise Practice Exercise|21 Videos

Similar Questions

Explore conceptually related problems

Assertion (A) : The coefficient of of x^(5) in the expansion log_(e ) ((1+x)/(1-x)) is (2)/(5) Reason (R ) : The equality log((1+x)/(1-x))=2[x+(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+….oo] is valid for |x| lt 1

5x-(13)/(2)x^(2)+(35)/(3)x^(3)-(97)/(4)x^(4)+....=

Knowledge Check

  • 1-(x)/(2)+(x^(3))/(3)-(x^(3))/(4)+…..oo=

    A
    `log(1+x)`
    B
    `-log(1+x)`
    C
    `(-log(1+x))/(x)`
    D
    `(log_(e )(1+x))/(x)`
  • If |x| lt 1 and y=x-(x^(2))/(2)+(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+…oo then x =

    A
    `y+(y^(2))/(2!)+(y^(3))/(3!)+…oo`
    B
    `y-(y^(2))/(2)+(y^(3))/(3)-….oo`
    C
    `y-(y^(2))/(2!)+(y^(3))/(3!)+…oo`
    D
    `y-(y^(2))/(2!)+(y^(3))/(3!)- ….. oo`
  • (x)/(1.2)+(x^(2))/(3.4)+(x^(3))/(5.6)+....=

    A
    `(sqrt(x))/(2)log.(1+sqrt(x))/(1-sqrt(x))+(1)/(2)log(1-x)`
    B
    `(sqrt(x))/(2)log.(1-sqrt(x))/(1+sqrt(x))+log(1-x)`
    C
    `(sqrt(x))/(2)log.(1+sqrt(x))/(1-sqrt(x))+log(x-1)`
    D
    `(sqrt(x))/(2)log.(1-sqrt(x))/(1+sqrt(x))+log(x-1)`
  • Similar Questions

    Explore conceptually related problems

    1+(w^2x)/(1!)+(wx^2)/(1!)+(x^3)/(3!) + (w^2x^4)/(4!) +(wx^5)/(5!) +(wx^5)/(5!) +(x^6)/(6!) + .... oo =

    If sin^(-1)(x-(x^(2))/2+(x^(3))/4-……oo) +cos^(-1)(x^(2)-(x^(4))/2+(x^(6))/4-……..oo)=(pi)/2 and 0ltxltsqrt(2) then x=

    Assertion (A) : x + x^(2)/(1!) + x^(3) /(2!) + (x^4)/(3!) + .....+ oo = f(x) Then the series f(1), f(2) ,f(3) ,f(4) ... Are in G.P . Reason (R) : In the above series f'(x) = e^(x) (x+2)

    1+(omegax)/(1!) +(omega^2x^2)/(2!)+(omega^3x^3)/(3!)+(omega^4x^4)/(4!)+(omega^5x^5)/(5!)+ .....oo =

    (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+....)^(2)-(ax+(a^(3)x^(3))/(3!)+(a^(5)x^(5))/(5!)+....)^(2)=