Home
Class 12
MATHS
The variance of observation x(1), x(2),x...

The variance of observation `x_(1), x_(2),x_(3),…,x_(n)` is `sigma^(2)` then the variance of
`alpha x_(1), alpha x_(2), alpha x_(3),….,alpha x_(n), (alpha != 0)` is

A

`sigma^(2)`

B

`alpha sigma^(2)`

C

`alpha^(2) sigma^(2)`

D

`(sigma^(2))/(alpha^(2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MEASURES OF DISPERSION (STATISTICS)

    AAKASH SERIES|Exercise Exercise - II|32 Videos
  • MEASURES OF DISPERSION (STATISTICS)

    AAKASH SERIES|Exercise Practice Exercise|54 Videos
  • MEASURES OF DISPERSION (STATISTICS)

    AAKASH SERIES|Exercise Additional Exercise (Long answer Questions)|11 Videos
  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise EXERCISE|28 Videos
  • PARABOLA

    AAKASH SERIES|Exercise EXERCISE -3.2 III.|5 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta , gamma are the roots of x^(3) + 2x^(2) - 5x + 3 = 0 then the equation whose roots alpha - (1)/(beta gamma), beta - (1)/(gamma alpha), gamma - (1)/(alpha beta ) is

Solve Sin 3 alpha = 4 Sin alpha Sin (x + alpha) Sin(x-alpha) where a ne n pi, n in z

Knowledge Check

  • If sin 3alpha = 4 sin alpha sin (x + alpha)sin(x-alpha) , then x =

    A
    `n pi pm pi//3`
    B
    `2n pi pm pi//3`
    C
    `n pi pm pi//6`
    D
    `2n pi pm pi//6`
  • If l, alpha_(1), alpha_(2),……., alpha_(n-1) are the roots of x^(n) - 1 = 0 then (1 - alpha_(1)) (1 - alpha_(2)) ….. (1 - alpha_(1)) =

    A
    n
    B
    0
    C
    1
    D
    `-1`
  • If alpha is a non-real root of x^(7) = 1 then alpha(1 + alpha) (1 + alpha^(2) + alpha^(4)) =

    A
    2
    B
    -1
    C
    1
    D
    `-2`
  • Similar Questions

    Explore conceptually related problems

    If alpha is a non real root of the equation x^(6)-1=0 then (alpha^(2)+alpha^(3)+alpha^(4)+alpha^(5))/(alpha+1)

    If alpha is non -real root of x^7 =1 , then alpha(1+ alpha) (1+ alpha^2 + alpha^4) =

    If alpha is a non-real root of x^(7) = 1 then alpha (1 + alpha)(1 + alpha^(2) + alpha^(4))=

    If alpha_1 , alpha_2 ,……….,alpha_n are the roots of x^n + px + q = 0 , then (alpha_n - alpha_1) (alpha_n - alpha_2) ………(alpha_n - alpha_(n-1) ) =

    If alpha_(1),alpha_(2) are the roots of x^(2)+ax+1=0andalpha_(3),alpha_(4) are the roots of x^(2)+bx+1=0 then (alpha_(1)+alpha_(3))(alpha_(2)+alpha_(3))(alpha_(1)+alpha_(2))(alpha_(2)+alpha_(4))=