Home
Class 12
MATHS
lim(xtooo)((x+1)/(x+2))^(2x+1) is...

`lim_(xtooo)((x+1)/(x+2))^(2x+1)` is

A

e

B

`e^(-2)`

C

`e^(-1)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( \frac{x+1}{x+2} \right)^{2x+1} \), we will follow these steps: ### Step 1: Rewrite the Limit We start by rewriting the limit in a more manageable form: \[ L = \lim_{x \to \infty} \left( \frac{x+1}{x+2} \right)^{2x+1} \] ### Step 2: Identify the Indeterminate Form As \( x \to \infty \), both the numerator and denominator approach infinity, leading to the form \( \frac{\infty}{\infty} \). Thus, we can express this limit using the exponential function: \[ L = e^{\lim_{x \to \infty} (2x+1) \ln\left(\frac{x+1}{x+2}\right)} \] ### Step 3: Simplify the Logarithm Next, we simplify the logarithm: \[ \ln\left(\frac{x+1}{x+2}\right) = \ln(x+1) - \ln(x+2) \] Using properties of logarithms, we can express this as: \[ \ln\left(\frac{x+1}{x+2}\right) = \ln\left(1 - \frac{1}{x+2}\right) \] ### Step 4: Use Taylor Expansion For large \( x \), we can use the Taylor expansion \( \ln(1 - u) \approx -u \) when \( u \) is small: \[ \ln\left(1 - \frac{1}{x+2}\right) \approx -\frac{1}{x+2} \] ### Step 5: Substitute Back into the Limit Now substituting back into our limit: \[ L = e^{\lim_{x \to \infty} (2x+1) \left(-\frac{1}{x+2}\right)} \] ### Step 6: Simplify the Expression We can simplify the expression: \[ (2x + 1) \left(-\frac{1}{x + 2}\right) = -\frac{2x + 1}{x + 2} \] Now, we can divide the numerator and denominator by \( x \): \[ -\frac{2 + \frac{1}{x}}{1 + \frac{2}{x}} \] ### Step 7: Evaluate the Limit Taking the limit as \( x \to \infty \): \[ \lim_{x \to \infty} -\frac{2 + \frac{1}{x}}{1 + \frac{2}{x}} = -\frac{2 + 0}{1 + 0} = -2 \] ### Step 8: Final Result Now substituting back into our expression for \( L \): \[ L = e^{-2} \] Thus, the final answer is: \[ \lim_{x \to \infty} \left( \frac{x+1}{x+2} \right)^{2x+1} = e^{-2} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples Level 2 (Single Correct Answer)|30 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Numberical Answer)|16 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Single Correct Answer)|10 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xtooo)((x-3)/(x+2))^(x)

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then lim_(xto1) (x-1)/(sin(f(x)-2x-1)) is equal to

Knowledge Check

  • What is the value of lim_(xtooo) ((x-2)/(x+2))^(x+2) ?

    A
    0
    B
    `e^(4)`
    C
    `e^(-2)`
    D
    `e^(-4)`
  • If l=lim_(xtooo)((x+1)/(x-1))^(x) , the value of {l} and [l] are

    A
    7
    B
    `7-e^(2)`
    C
    `-7`
    D
    `e^(2)-7`
  • Evaluate lim_(xtooo) (1+(2)/(x))^(x).

    A
    0
    B
    1
    C
    -1
    D
    does not exist
  • Similar Questions

    Explore conceptually related problems

    What is the value of lim_(xtooo) ((x+6)/(x+1))^(x+4)

    Evaluate lim_(xtooo)((x+2)/(x+1))^(x+3).

    lim_(xtooo) (1-cos^(3)4x)/(x^(2)) is equal to

    What is lim_(xtooo) ((x)/(3+x))^(3x) equal to?

    If l=lim_(xto-2) (tanpix)/(x+2)+lim_(xtooo) ( (1+1)/(x^2)^2) , then which one of the following is not correct?