Home
Class 12
MATHS
lim(n tooo)1/n^2 (1+2+…+n) is equal to...

`lim_(n tooo)1/n^2` (1+2+…+n) is equal to

A

0

B

1

C

`1/2`

D

`1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \frac{1}{n^2} (1 + 2 + \ldots + n) \), we can follow these steps: ### Step 1: Identify the sum of the first n natural numbers The sum of the first \( n \) natural numbers is given by the formula: \[ S_n = 1 + 2 + \ldots + n = \frac{n(n + 1)}{2} \] ### Step 2: Substitute the sum into the limit expression Now, we substitute \( S_n \) into the limit: \[ \lim_{n \to \infty} \frac{1}{n^2} \left( \frac{n(n + 1)}{2} \right) \] ### Step 3: Simplify the expression We can simplify the expression inside the limit: \[ = \lim_{n \to \infty} \frac{n(n + 1)}{2n^2} \] This simplifies to: \[ = \lim_{n \to \infty} \frac{n + 1}{2n} \] ### Step 4: Further simplify the limit Now, we can simplify \( \frac{n + 1}{2n} \): \[ = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{2} \] ### Step 5: Evaluate the limit As \( n \to \infty \), \( \frac{1}{n} \) approaches 0. Therefore: \[ = \frac{1 + 0}{2} = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{n \to \infty} \frac{1}{n^2} (1 + 2 + \ldots + n) = \frac{1}{2} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Level 1 Single Correct Answer)|39 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Level 2 Single Correct Answer)|25 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Numberical Answer)|16 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (1) / ((n) ^ ((1) / (n))) is equal to

Evaluate : lim_( n -> ∞ )( 1 + 1/n )^n is equal to

Knowledge Check

  • lim_(nto oo) (2^n+5^n)^(1//n) is equal to

    A
    2
    B
    5
    C
    e
    D
    none of these
  • If S_(n) = (1^(2)2)/(1!) + (2^(2)3)/(2!) + (3^(2).4)/(3!) + ... + (n^(2)(n+1))/(n!) , then lim_(n to oo) S_(n) is equal to

    A
    3e
    B
    5e
    C
    7e
    D
    9e
  • If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n in N , then lim_( n to oo)f(n) is equal to

    A
    3
    B
    `-3`
    C
    `(1)/(2)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    lim_ (n rarr oo) (1) / (2) tan ((x) / (2)) + (1) / (2 ^ (2)) tan ((x) / (2 ^ (2))). ... + (1) / (2 ^ (n)) tan ((x) / (2 ^ (n))) is equal to lim_ (n rarr oo) sum_ (n = 1) ^ (n) (1 ) / (2 ^ (n)) tan ((x) / (2 ^ (n)))

    lim_(n rarr oo)(n!)/((n+1)!+n!) is equal to

    lim_(n rarr oo)(n!)/((n+1)!+n!) is equal to

    lim_(n to oo) (3^(n)+4^(n))^(1//n) is equal to

    lim_(ntooo) ((n!)^(1//n))/(n) equals