Home
Class 10
MATHS
If cosec theta + cot theta= p, cos the...

If `cosec theta + cot theta= p`, `cos theta = ?`

A

`((1-p^(2)))/((p^(2)+1))`

B

`((p^(2)+1))/((p^(2)-1))`

C

`((p^(2)-1))/((p+1))`

D

`((p-1))/((p^(2)+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \csc \theta + \cot \theta = p \) and we need to find \( \cos \theta \), we can follow these steps: ### Step 1: Rewrite the given equation We start with the equation: \[ \csc \theta + \cot \theta = p \] Using the definitions of cosecant and cotangent, we can rewrite this as: \[ \frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta} = p \] This simplifies to: \[ \frac{1 + \cos \theta}{\sin \theta} = p \] ### Step 2: Express \(\sin \theta\) in terms of \(p\) and \(\cos \theta\) From the equation above, we can express \(\sin \theta\): \[ 1 + \cos \theta = p \sin \theta \] Rearranging gives: \[ \sin \theta = \frac{1 + \cos \theta}{p} \] ### Step 3: Use the Pythagorean identity We know from the Pythagorean identity that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \(\sin \theta\) from Step 2 into this identity gives: \[ \left(\frac{1 + \cos \theta}{p}\right)^2 + \cos^2 \theta = 1 \] ### Step 4: Expand and simplify Expanding the left side: \[ \frac{(1 + \cos \theta)^2}{p^2} + \cos^2 \theta = 1 \] This expands to: \[ \frac{1 + 2\cos \theta + \cos^2 \theta}{p^2} + \cos^2 \theta = 1 \] Multiplying through by \(p^2\) to eliminate the fraction: \[ 1 + 2\cos \theta + \cos^2 \theta + p^2 \cos^2 \theta = p^2 \] Combining like terms: \[ 1 + 2\cos \theta + (1 + p^2)\cos^2 \theta = p^2 \] Rearranging gives: \[ (1 + p^2)\cos^2 \theta + 2\cos \theta + (1 - p^2) = 0 \] ### Step 5: Solve the quadratic equation This is a quadratic equation in \(\cos \theta\): \[ (1 + p^2)\cos^2 \theta + 2\cos \theta + (1 - p^2) = 0 \] Using the quadratic formula \( \cos \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \(a = 1 + p^2\), \(b = 2\), and \(c = 1 - p^2\). \[ \cos \theta = \frac{-2 \pm \sqrt{2^2 - 4(1 + p^2)(1 - p^2)}}{2(1 + p^2)} \] Calculating the discriminant: \[ \sqrt{4 - 4(1 + p^2)(1 - p^2)} = \sqrt{4 - 4(1 - p^4)} = \sqrt{4p^4} \] Thus, the equation simplifies to: \[ \cos \theta = \frac{-2 \pm 2p^2}{2(1 + p^2)} = \frac{-1 \pm p^2}{1 + p^2} \] ### Step 6: Final result Choosing the positive root (since cosine can be negative or positive depending on the angle): \[ \cos \theta = \frac{p^2 - 1}{p^2 + 1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|53 Videos
  • TRIANGLES

    RS AGGARWAL|Exercise Test Yourself|20 Videos
  • TRIGONOMETRIC RATIOS

    RS AGGARWAL|Exercise Exercise 10|35 Videos

Similar Questions

Explore conceptually related problems

If (cosec theta - cot theta)=2 , the (cosec theta +cot theta) is equal to

Eliminate theta, if x = 3 cosec theta + 4 cot theta, y = 4 cosec theta - 3 cot theta .

If : csc theta - cot theta = p, "then" : csc theta= A) theta + (1)/(p) B) theta - (1)/(p) C) (1)/(2) (p +(1)/(p)) D) (1)/(2) (p - (1)/(p))

If cosec theta - cot theta = 1/2, 0 lt theta lt pi/2, then cos theta is equal to

If ("cosec" theta +cot theta)=x find "cosec" theta - cot theta .

If "cosec" theta- cot theta=x , then "cosec"theta+cot theta= _________

If cosec theta +cot theta=2 , then Sin theta is: यदि cosec theta +cot theta=2 ,है, तो Sin theta :

Prove that (cot theta + "cosec" theta -1 )/(cot theta - "cosec" theta +1)=(1+ cos theta)/(sin theta).

Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .

Prove that: (sin theta)/(1 - cos theta) + (tan theta)/(1 + cos theta) = cosec theta + cot theta + sec theta cosec theta - cosec theta

RS AGGARWAL-TRIGONOMETRIC IDENTITIES-Test Yourself
  1. (cos^(2)56^(@)+cos^(2)34^(@))/(sin^(@)56^(@)+sin^(2)34^(@))+3tan^(2)56...

    Text Solution

    |

  2. (sin^2 30^@ cos^2 45^@+4 tan^2 30^@+1/2 sin^2 90^@+1/8 cot^2 60^@)=?

    Text Solution

    |

  3. If cosA+cos^(2)A=1, then sin^(2)A+sin^(4)A=?.

    Text Solution

    |

  4. If sin theta=(sqrt(3))/(2)" then " ("cosec"theta+cot theta)=?

    Text Solution

    |

  5. If cotA=(4)/(5), then ((sinA+cosA))/((sinA-cosA))=?

    Text Solution

    |

  6. If 2x=secA and (2)/(x)=tanA, " prove that " (x^(2)-(1)/(x^(2)))=(1)/(4...

    Text Solution

    |

  7. If sqrt(3) tantheta=3sintheta, " prove that " (sin^(2)theta-cos^(2)the...

    Text Solution

    |

  8. Prove that ((sin^(2)73^(@)+sin^(2)17^(@)))/((cos^(2)28^(@)+cos^(2)62^(...

    Text Solution

    |

  9. If 2sin2 theta=sqrt(3) ,then the value of theta is :

    Text Solution

    |

  10. Prove that sqrt((1+cosA)/(1-cosA))=("cosec"A+cotA).

    Text Solution

    |

  11. If cosec theta + cot theta= p, cos theta = ?

    Text Solution

    |

  12. Prove that ("cosec"A-cotA)^(2)=((1-cosA))/((1+cosA)).

    Text Solution

    |

  13. If 5cottheta=3. find the value of (5sintheta-3costheta)/(4sintheta+3co...

    Text Solution

    |

  14. Prove that (sin32^(@)cos58^(@)+cos32^(@)sin58^(@))=1.

    Text Solution

    |

  15. If x=a sin theta+b cos theta and y=a cos theta -b sin theta, " prove t...

    Text Solution

    |

  16. ((1+sintheta))/((1-sintheta))=?

    Text Solution

    |

  17. Prove that (1)/((sec theta - tan theta))-(1)/(cos theta)=(1)/(cos th...

    Text Solution

    |

  18. ((sinA-2sin^(3)A))/((2cos^(3)A-cosA)) = ?

    Text Solution

    |

  19. Prove that (tanA)/((1-cotA))+(cotA)/((1-tanA))=(1+tanA+cotA).

    Text Solution

    |

  20. If sec5A="cosec"(A-36^(@)) and 5A " is an acute angle, show that " A=2...

    Text Solution

    |