Home
Class 10
MATHS
If cosec theta + cot theta= p, cos the...

If `cosec theta + cot theta= p`, `cos theta = ?`

A

`((1-p^(2)))/((p^(2)+1))`

B

`((p^(2)+1))/((p^(2)-1))`

C

`((p^(2)-1))/((p+1))`

D

`((p-1))/((p^(2)+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \csc \theta + \cot \theta = p \) and we need to find \( \cos \theta \), we can follow these steps: ### Step 1: Rewrite the given equation We start with the equation: \[ \csc \theta + \cot \theta = p \] Using the definitions of cosecant and cotangent, we can rewrite this as: \[ \frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta} = p \] This simplifies to: \[ \frac{1 + \cos \theta}{\sin \theta} = p \] ### Step 2: Express \(\sin \theta\) in terms of \(p\) and \(\cos \theta\) From the equation above, we can express \(\sin \theta\): \[ 1 + \cos \theta = p \sin \theta \] Rearranging gives: \[ \sin \theta = \frac{1 + \cos \theta}{p} \] ### Step 3: Use the Pythagorean identity We know from the Pythagorean identity that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \(\sin \theta\) from Step 2 into this identity gives: \[ \left(\frac{1 + \cos \theta}{p}\right)^2 + \cos^2 \theta = 1 \] ### Step 4: Expand and simplify Expanding the left side: \[ \frac{(1 + \cos \theta)^2}{p^2} + \cos^2 \theta = 1 \] This expands to: \[ \frac{1 + 2\cos \theta + \cos^2 \theta}{p^2} + \cos^2 \theta = 1 \] Multiplying through by \(p^2\) to eliminate the fraction: \[ 1 + 2\cos \theta + \cos^2 \theta + p^2 \cos^2 \theta = p^2 \] Combining like terms: \[ 1 + 2\cos \theta + (1 + p^2)\cos^2 \theta = p^2 \] Rearranging gives: \[ (1 + p^2)\cos^2 \theta + 2\cos \theta + (1 - p^2) = 0 \] ### Step 5: Solve the quadratic equation This is a quadratic equation in \(\cos \theta\): \[ (1 + p^2)\cos^2 \theta + 2\cos \theta + (1 - p^2) = 0 \] Using the quadratic formula \( \cos \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \(a = 1 + p^2\), \(b = 2\), and \(c = 1 - p^2\). \[ \cos \theta = \frac{-2 \pm \sqrt{2^2 - 4(1 + p^2)(1 - p^2)}}{2(1 + p^2)} \] Calculating the discriminant: \[ \sqrt{4 - 4(1 + p^2)(1 - p^2)} = \sqrt{4 - 4(1 - p^4)} = \sqrt{4p^4} \] Thus, the equation simplifies to: \[ \cos \theta = \frac{-2 \pm 2p^2}{2(1 + p^2)} = \frac{-1 \pm p^2}{1 + p^2} \] ### Step 6: Final result Choosing the positive root (since cosine can be negative or positive depending on the angle): \[ \cos \theta = \frac{p^2 - 1}{p^2 + 1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|53 Videos
  • TRIANGLES

    RS AGGARWAL|Exercise Test Yourself|20 Videos
  • TRIGONOMETRIC RATIOS

    RS AGGARWAL|Exercise Exercise 10|35 Videos

Similar Questions

Explore conceptually related problems

Eliminate theta, if x = 3 cosec theta + 4 cot theta, y = 4 cosec theta - 3 cot theta .

If ("cosec" theta +cot theta)=x find "cosec" theta - cot theta .

Knowledge Check

  • If (cosec theta - cot theta)=2 , the (cosec theta +cot theta) is equal to

    A
    2
    B
    `1/2`
    C
    1
    D
    `3/2`
  • If : csc theta - cot theta = p, "then" : csc theta= A) theta + (1)/(p) B) theta - (1)/(p) C) (1)/(2) (p +(1)/(p)) D) (1)/(2) (p - (1)/(p))

    A
    `theta + (1)/(p)`
    B
    `theta - (1)/(p)`
    C
    `(1)/(2) (p +(1)/(p))`
    D
    `(1)/(2) (p - (1)/(p))`
  • If cosec theta - cot theta = 1/2, 0 lt theta lt pi/2, then cos theta is equal to

    A
    `(-3)/(5)`
    B
    `-(5)/(3)`
    C
    `5/3`
    D
    `3/5`
  • Similar Questions

    Explore conceptually related problems

    If "cosec" theta- cot theta=x , then "cosec"theta+cot theta= _________

    If cosec theta +cot theta=2 , then Sin theta is: यदि cosec theta +cot theta=2 ,है, तो Sin theta :

    Prove that (cot theta + "cosec" theta -1 )/(cot theta - "cosec" theta +1)=(1+ cos theta)/(sin theta).

    Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .

    Prove that: (sin theta)/(1 - cos theta) + (tan theta)/(1 + cos theta) = cosec theta + cot theta + sec theta cosec theta - cosec theta