Home
Class 11
MATHS
Using binomial theorem, expand each of t...

Using binomial theorem, expand each of the following: `(1-2x)^(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand \((1 - 2x)^5\) using the Binomial Theorem, we can follow these steps: ### Step 1: Understand the Binomial Theorem The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] where \(\binom{n}{k}\) is the binomial coefficient, which can be calculated as: \[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \] ### Step 2: Identify \(a\), \(b\), and \(n\) In our case, we have: - \(a = 1\) - \(b = -2x\) - \(n = 5\) ### Step 3: Write the Expansion Using the Binomial Theorem, we can expand \((1 - 2x)^5\) as follows: \[ (1 - 2x)^5 = \sum_{k=0}^{5} \binom{5}{k} (1)^{5-k} (-2x)^k \] ### Step 4: Calculate Each Term Now we will calculate each term from \(k = 0\) to \(k = 5\): 1. For \(k = 0\): \[ \binom{5}{0} (1)^{5-0} (-2x)^0 = 1 \cdot 1 \cdot 1 = 1 \] 2. For \(k = 1\): \[ \binom{5}{1} (1)^{5-1} (-2x)^1 = 5 \cdot 1 \cdot (-2x) = -10x \] 3. For \(k = 2\): \[ \binom{5}{2} (1)^{5-2} (-2x)^2 = 10 \cdot 1 \cdot 4x^2 = 40x^2 \] 4. For \(k = 3\): \[ \binom{5}{3} (1)^{5-3} (-2x)^3 = 10 \cdot 1 \cdot (-8x^3) = -80x^3 \] 5. For \(k = 4\): \[ \binom{5}{4} (1)^{5-4} (-2x)^4 = 5 \cdot 1 \cdot 16x^4 = 80x^4 \] 6. For \(k = 5\): \[ \binom{5}{5} (1)^{5-5} (-2x)^5 = 1 \cdot 1 \cdot (-32x^5) = -32x^5 \] ### Step 5: Combine All Terms Now, we combine all the terms we calculated: \[ (1 - 2x)^5 = 1 - 10x + 40x^2 - 80x^3 + 80x^4 - 32x^5 \] ### Final Answer Thus, the expansion of \((1 - 2x)^5\) is: \[ 1 - 10x + 40x^2 - 80x^3 + 80x^4 - 32x^5 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • ARITHMETIC PROGRESSION

    RS AGGARWAL|Exercise Exercise 11F (Very Short-Answer Type Questions)|17 Videos
  • CIRCLE

    RS AGGARWAL|Exercise EXERCISE 21 B|18 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem, expand each of the following: (x-1/y)^(5)

Using binomial theorem, expand each of the following: (2x-3)^(6)

Using binomial theorem, expand each of the following: (3x+2y)^(5)

Using binomial theorem, expand each of the following: (2x-3y)^(4)

Using binomial theorem, expand each of the following: (1+x/2-2/x)^(4),x!=0

Using binomial theorem, expand each of the following: (1+2x-3x^(2))^(4)

Using binomial theorem, expand each of the following: (x^(2)-2/x)^(7)

Using binomial theorem, expand each of the following: ((2x)/3-3/(2x))^(6)

Using binomial theorem, expand each of the following: (3x^(2)-2ax+3a^(2))^(3)

Using binomial theorem evaluate each of the following: (102)^(5)