Home
Class 11
MATHS
Using binomial theorem, expand each of t...

Using binomial theorem, expand each of the following:`(x^(2)-2/x)^(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((x^2 - \frac{2}{x})^7\) using the Binomial Theorem, we follow these steps: ### Step 1: Identify the terms in the binomial The expression can be identified as \(a = x^2\) and \(b = -\frac{2}{x}\). We will use the Binomial Theorem, which states: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] Here, \(n = 7\). ### Step 2: Write the expansion using the Binomial Theorem Using the Binomial Theorem, we can write: \[ (x^2 - \frac{2}{x})^7 = \sum_{k=0}^{7} \binom{7}{k} (x^2)^{7-k} \left(-\frac{2}{x}\right)^k \] ### Step 3: Simplify each term in the expansion Now we will simplify each term in the summation: \[ = \sum_{k=0}^{7} \binom{7}{k} (x^2)^{7-k} (-2)^k \cdot \frac{1}{x^k} \] This can be rewritten as: \[ = \sum_{k=0}^{7} \binom{7}{k} (-2)^k x^{2(7-k) - k} \] \[ = \sum_{k=0}^{7} \binom{7}{k} (-2)^k x^{14 - 3k} \] ### Step 4: Write out the individual terms Now we will write out the individual terms for \(k = 0\) to \(k = 7\): - For \(k = 0\): \[ \binom{7}{0} (-2)^0 x^{14} = 1 \cdot 1 \cdot x^{14} = x^{14} \] - For \(k = 1\): \[ \binom{7}{1} (-2)^1 x^{11} = 7 \cdot (-2) \cdot x^{11} = -14x^{11} \] - For \(k = 2\): \[ \binom{7}{2} (-2)^2 x^{8} = 21 \cdot 4 \cdot x^{8} = 84x^{8} \] - For \(k = 3\): \[ \binom{7}{3} (-2)^3 x^{5} = 35 \cdot (-8) \cdot x^{5} = -280x^{5} \] - For \(k = 4\): \[ \binom{7}{4} (-2)^4 x^{2} = 35 \cdot 16 \cdot x^{2} = 560x^{2} \] - For \(k = 5\): \[ \binom{7}{5} (-2)^5 x^{-1} = 21 \cdot (-32) \cdot x^{-1} = -672x^{-1} \] - For \(k = 6\): \[ \binom{7}{6} (-2)^6 x^{-4} = 7 \cdot 64 \cdot x^{-4} = 448x^{-4} \] - For \(k = 7\): \[ \binom{7}{7} (-2)^7 x^{-7} = 1 \cdot (-128) \cdot x^{-7} = -128x^{-7} \] ### Step 5: Combine all terms Now we combine all the terms: \[ (x^2 - \frac{2}{x})^7 = x^{14} - 14x^{11} + 84x^{8} - 280x^{5} + 560x^{2} - 672x^{-1} + 448x^{-4} - 128x^{-7} \] ### Final Answer Thus, the expansion of \((x^2 - \frac{2}{x})^7\) is: \[ x^{14} - 14x^{11} + 84x^{8} - 280x^{5} + 560x^{2} - 672x^{-1} + 448x^{-4} - 128x^{-7} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • ARITHMETIC PROGRESSION

    RS AGGARWAL|Exercise Exercise 11F (Very Short-Answer Type Questions)|17 Videos
  • CIRCLE

    RS AGGARWAL|Exercise EXERCISE 21 B|18 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem, expand each of the following: (1-2x)^(5)

Using binomial theorem, expand each of the following: (2x-3)^(6)

Using binomial theorem, expand each of the following: (1+x/2-2/x)^(4),x!=0

Using binomial theorem, expand each of the following: (3x^(2)-2ax+3a^(2))^(3)

Using binomial theorem, expand each of the following: (x-1/y)^(5)

Using binomial theorem, expand each of the following: ((2x)/3-3/(2x))^(6)

Using binomial theorem, expand each of the following: (1+2x-3x^(2))^(4)

Using binomial theorem, expand each of the following: (3x+2y)^(5)

Using binomial theorem, expand each of the following: (2x-3y)^(4)

Using binomial theorem, expand each of the following: (sqrt(x)+sqrt(y))^(8)