Home
Class 12
MATHS
If alpha, beta are the roots of x^(2) + ...

If `alpha, beta` are the roots of `x^(2) + px + q = 0, and omega` is a cube root of unity, then value of `(omega alpha + omega^(2) beta) (omega^(2) alpha + omega beta)` is

A

`p^(2)`

B

3q

C

`p^(2) - 2q`

D

`p^(2) - 3q`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((\omega \alpha + \omega^2 \beta)(\omega^2 \alpha + \omega \beta)\), where \(\alpha\) and \(\beta\) are the roots of the quadratic equation \(x^2 + px + q = 0\) and \(\omega\) is a cube root of unity. ### Step-by-Step Solution: 1. **Understanding the Roots**: The roots of the quadratic equation \(x^2 + px + q = 0\) are given by: \[ \alpha + \beta = -p \quad \text{(sum of roots)} \] \[ \alpha \beta = q \quad \text{(product of roots)} \] 2. **Expanding the Expression**: We start with the expression: \[ (\omega \alpha + \omega^2 \beta)(\omega^2 \alpha + \omega \beta) \] We can expand this using the distributive property: \[ = \omega^3 \alpha^2 + \omega^2 \alpha \beta + \omega \beta \omega^2 \alpha + \omega^3 \beta^2 \] 3. **Using Properties of \(\omega\)**: Since \(\omega\) is a cube root of unity, we know: \[ \omega^3 = 1 \] Therefore, we can simplify the expression: \[ = \alpha^2 + \beta^2 + \omega^2 \alpha \beta + \omega \alpha \beta \] \[ = \alpha^2 + \beta^2 + (\omega + \omega^2) \alpha \beta \] Since \(\omega + \omega^2 = -1\): \[ = \alpha^2 + \beta^2 - \alpha \beta \] 4. **Expressing \(\alpha^2 + \beta^2\)**: We can express \(\alpha^2 + \beta^2\) in terms of \(\alpha + \beta\) and \(\alpha \beta\): \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta \] Substituting the values we have: \[ = (-p)^2 - 2q = p^2 - 2q \] 5. **Final Expression**: Now substituting back into our expression: \[ = (p^2 - 2q) - q = p^2 - 3q \] Thus, the value of the expression \((\omega \alpha + \omega^2 \beta)(\omega^2 \alpha + \omega \beta)\) is: \[ \boxed{p^2 - 3q} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 16|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 17|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 14|1 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and omega,omega^(2) are the complex roots of unity,then omega^(2)a+omega beta)(omega alpha+omega^(2)beta)=

If omega is a cube root of unity,then find the value of the following: (1+omega-omega^(2))(1-omega+omega^(2))

Knowledge Check

  • If omega is a cube root of unity, then the value of ( 1 + omega - omega ^(2)) ( 1 - omega + omega ^(2)) is

    A
    1
    B
    0
    C
    2
    D
    4
  • If omega is cube root of unity, then (1 + omega - omega^(2) )^(7) equals

    A
    `128 omega `
    B
    `- 128 omega`
    C
    `128 omega ^(2)`
    D
    `- 128 omega ^(2)`
  • If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

    A
    are vertices of an equilateral triangle
    B
    lie on a straight line
    C
    lie on a circle of radius `sqrt(3//2)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If omega is complex cube root of unity, then the value of (1 + 2 omega )^(-1) + (2 + omega )^(-1) - (1 + omega ) ^(-1) =

    If omega complex cube root of unity, then ((1 + omega )/(omega ^(2)))^(3) =

    If 1, omega, omega^2 be the cube roots of unity, then the value of (1 - omega + omega^2)^(5) + (1 + omega - omega^2)^5 is :

    If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

    If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=