Home
Class 12
MATHS
If omega ne 1 is a cube root of unity, t...

If `omega ne 1` is a cube root of unity, then `1, omega, omega^(2)`

A

are vertices of an equilateral triangle

B

lie on a straight line

C

lie on a circle of radius `sqrt(3//2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that the points \(1\), \(\omega\), and \(\omega^2\) form the vertices of an equilateral triangle in the complex plane, given that \(\omega\) is a cube root of unity and \(\omega \neq 1\). ### Step-by-Step Solution: 1. **Identify Cube Roots of Unity**: The cube roots of unity are the solutions to the equation \(z^3 = 1\). They are given by: \[ z = 1, \quad z = \omega, \quad z = \omega^2 \] where \(\omega = e^{2\pi i / 3} = -\frac{1}{2} + \frac{\sqrt{3}}{2} i\) and \(\omega^2 = e^{-2\pi i / 3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} i\). 2. **Calculate the Distances**: To show that the triangle is equilateral, we need to calculate the distances between the points \(1\), \(\omega\), and \(\omega^2\). - **Distance between \(1\) and \(\omega\)**: \[ |1 - \omega| = |1 - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i\right)| = |1 + \frac{1}{2} - \frac{\sqrt{3}}{2} i| = \left| \frac{3}{2} - \frac{\sqrt{3}}{2} i \right| \] The modulus is: \[ |1 - \omega| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{3}{4}} = \sqrt{3} \] - **Distance between \(1\) and \(\omega^2\)**: \[ |1 - \omega^2| = |1 - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i\right)| = |1 + \frac{1}{2} + \frac{\sqrt{3}}{2} i| = \left| \frac{3}{2} + \frac{\sqrt{3}}{2} i \right| \] The modulus is: \[ |1 - \omega^2| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{3}{4}} = \sqrt{3} \] - **Distance between \(\omega\) and \(\omega^2\)**: \[ |\omega - \omega^2| = \left| \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i\right) \right| = \left| \frac{\sqrt{3}}{2} i + \frac{\sqrt{3}}{2} i \right| = \left| \sqrt{3} i \right| \] The modulus is: \[ |\omega - \omega^2| = \sqrt{3} \] 3. **Conclusion**: Since all three distances are equal: \[ |1 - \omega| = |1 - \omega^2| = |\omega - \omega^2| = \sqrt{3} \] Therefore, the points \(1\), \(\omega\), and \(\omega^2\) form the vertices of an equilateral triangle.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE|20 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If 1,omega,omega^(2) are cube roots of unity then 1,omega,omega^(2) are in

If omega (ne 1) is a cube root of unity and (1 + omega)^(2017) = A + B omega . Then A and B are respectively the numbers

If omega (ne 1) is a cube root of unity and (1 + omega^(2))^(11) = a + b omega + c omega^(2) , then (a, b, c) equals

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -EXERCISE LEVEL 1
  1. If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

    Text Solution

    |

  2. If alpha,beta,gamma are the cube roots of p then for any x,y and z (xa...

    Text Solution

    |

  3. ABCD is a rhombus. Its diagonals AC and BD intersect at the point M a...

    Text Solution

    |

  4. Let a, be the roots of the equation x^2+x+1=0. The equation whose root...

    Text Solution

    |

  5. If omega is a cube root of unity then find the value of sin((omega^(10...

    Text Solution

    |

  6. If omega (ne 1) is a cube root of unity and (1 + omega)^(2017) = A + B...

    Text Solution

    |

  7. If omega is the complex cube root of unity then |[1,1+i+omega^2,omeg...

    Text Solution

    |

  8. If omega is an imaginary cube root of unity, then (1-omega-omega^(2))^...

    Text Solution

    |

  9. If |{:(6i,-3i,1),(4,3i,1),(20,3,i):}|=x+iy,i=sqrt(-1) then

    Text Solution

    |

  10. If arg(z) lt 0, then find arg(-z) -arg(z).

    Text Solution

    |

  11. If z1,z2, z3 are complex numbers such that |z1|=|z2|=|z3|=|1/z1+1/z2+1...

    Text Solution

    |

  12. Let z1 and z2 be nth roots of unity which subtend a right angle at the...

    Text Solution

    |

  13. The complex number z1,z2 and z3 satisfying (z1 - z3)/(z2 - z3) = ( 1 -...

    Text Solution

    |

  14. Let omega = - (1)/(2) + i (sqrt3)/(2), then the value of the determina...

    Text Solution

    |

  15. The inequality |z-i| lt |z + i| represents the region

    Text Solution

    |

  16. Show that if iz^3+z^2-z+i=0, then |z|=1

    Text Solution

    |

  17. If x + iy = (1)/(1-cos theta + 2 i sin theta), theta ne 2n pi, n in I,...

    Text Solution

    |

  18. The equation z^3=bar z has

    Text Solution

    |

  19. If z = 5 + t + isqrt(25 - t^(2)), (-5 le t le 5), then locus of z is a...

    Text Solution

    |

  20. If omega is complex cube root of that 1/(a+omega)+1/(b+omega)+1/(c+ome...

    Text Solution

    |