Home
Class 12
MATHS
If omega ne 1 is a cube root of unity, t...

If `omega ne 1` is a cube root of unity, then `1, omega, omega^(2)`

A

are vertices of an equilateral triangle

B

lie on a straight line

C

lie on a circle of radius `sqrt(3//2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that the points \(1\), \(\omega\), and \(\omega^2\) form the vertices of an equilateral triangle in the complex plane, given that \(\omega\) is a cube root of unity and \(\omega \neq 1\). ### Step-by-Step Solution: 1. **Identify Cube Roots of Unity**: The cube roots of unity are the solutions to the equation \(z^3 = 1\). They are given by: \[ z = 1, \quad z = \omega, \quad z = \omega^2 \] where \(\omega = e^{2\pi i / 3} = -\frac{1}{2} + \frac{\sqrt{3}}{2} i\) and \(\omega^2 = e^{-2\pi i / 3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} i\). 2. **Calculate the Distances**: To show that the triangle is equilateral, we need to calculate the distances between the points \(1\), \(\omega\), and \(\omega^2\). - **Distance between \(1\) and \(\omega\)**: \[ |1 - \omega| = |1 - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i\right)| = |1 + \frac{1}{2} - \frac{\sqrt{3}}{2} i| = \left| \frac{3}{2} - \frac{\sqrt{3}}{2} i \right| \] The modulus is: \[ |1 - \omega| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{3}{4}} = \sqrt{3} \] - **Distance between \(1\) and \(\omega^2\)**: \[ |1 - \omega^2| = |1 - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i\right)| = |1 + \frac{1}{2} + \frac{\sqrt{3}}{2} i| = \left| \frac{3}{2} + \frac{\sqrt{3}}{2} i \right| \] The modulus is: \[ |1 - \omega^2| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{3}{4}} = \sqrt{3} \] - **Distance between \(\omega\) and \(\omega^2\)**: \[ |\omega - \omega^2| = \left| \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i\right) \right| = \left| \frac{\sqrt{3}}{2} i + \frac{\sqrt{3}}{2} i \right| = \left| \sqrt{3} i \right| \] The modulus is: \[ |\omega - \omega^2| = \sqrt{3} \] 3. **Conclusion**: Since all three distances are equal: \[ |1 - \omega| = |1 - \omega^2| = |\omega - \omega^2| = \sqrt{3} \] Therefore, the points \(1\), \(\omega\), and \(\omega^2\) form the vertices of an equilateral triangle.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE|20 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If 1,omega,omega^(2) are cube roots of unity then 1,omega,omega^(2) are in

Knowledge Check

  • If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

    A
    `x^3 + 1`
    B
    `x^3+omega `
    C
    `x^3+omega^2`
    D
    `x^3`
  • If omega is cube root of unity, then | {:(1, omega, omega ^(2)),( omega, omega ^(2) , 1),( omega ^(2) , 1, omega):}| is equal to

    A
    1
    B
    `omega`
    C
    `omega ^(2)`
    D
    0
  • If omega is a cube root of unity, then |(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)| is equal to

    A
    1
    B
    `omega`
    C
    `omega^(2)`
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If omega is cube root of unity, then (1 + omega - omega^(2) )^(7) equals

    If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

    If omega is cube root of unity, then Delta=|(x+1,omega,omega^(2)),(omega,x+omega^(2),1),(omega^(2),1,x+omega)|=

    If omega (ne 1) is a cube root of unity and (1 + omega)^(2017) = A + B omega . Then A and B are respectively the numbers

    If omega (ne 1) is a cube root of unity and (1 + omega^(2))^(11) = a + b omega + c omega^(2) , then (a, b, c) equals