Home
Class 12
MATHS
If omega ne 1 is a cube root of unity an...

If `omega ne 1` is a cube root of unity and `|z-1|^(2) + 2|z-omega|^(2) = 3|z - omega^(2)|^(2)` then z lies on

A

a straight line

B

a parabola

C

an ellipse

D

a rectangular hyperbola

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( |z - 1|^2 + 2|z - \omega|^2 = 3|z - \omega^2|^2 \), where \(\omega\) is a cube root of unity and \(\omega \neq 1\), we can follow these steps: ### Step 1: Express the Modulus Squared We start by expanding each term in the equation using the definition of modulus squared: 1. \( |z - 1|^2 = (z - 1)(\overline{z} - 1) = z\overline{z} - z - \overline{z} + 1 \) 2. \( |z - \omega|^2 = (z - \omega)(\overline{z} - \overline{\omega}) = z\overline{z} - z\overline{\omega} - \overline{z}\omega + \omega\overline{\omega} \) 3. \( |z - \omega^2|^2 = (z - \omega^2)(\overline{z} - \overline{\omega^2}) = z\overline{z} - z\overline{\omega^2} - \overline{z}\omega^2 + \omega^2\overline{\omega^2} \) ### Step 2: Substitute and Simplify Substituting these expressions into the original equation: \[ (z\overline{z} - z - \overline{z} + 1) + 2(z\overline{z} - z\overline{\omega} - \overline{z}\omega + 1) = 3(z\overline{z} - z\overline{\omega^2} - \overline{z}\omega^2 + 1) \] This simplifies to: \[ z\overline{z} - z - \overline{z} + 1 + 2z\overline{z} - 2z\overline{\omega} - 2\overline{z}\omega + 2 = 3z\overline{z} - 3z\overline{\omega^2} - 3\overline{z}\omega^2 + 3 \] ### Step 3: Rearranging the Equation Combine like terms: \[ 3z\overline{z} - z - \overline{z} + 3 - 2z\overline{\omega} - 2\overline{z}\omega = 3z\overline{z} - 3z\overline{\omega^2} - 3\overline{z}\omega^2 + 3 \] This leads to: \[ -z - \overline{z} + 3 - 2z\overline{\omega} - 2\overline{z}\omega = -3z\overline{\omega^2} - 3\overline{z}\omega^2 \] ### Step 4: Isolate Terms Rearranging gives: \[ z + \overline{z} + 2z\overline{\omega} + 2\overline{z}\omega = 3z\overline{\omega^2} + 3\overline{z}\omega^2 \] ### Step 5: Identify the Locus This equation describes a relationship between \(z\) and its conjugate, indicating that \(z\) lies on a specific geometric locus. To determine the exact nature of this locus, we can analyze the coefficients and the terms involved. ### Conclusion The final form of the equation suggests that \(z\) lies on a **rectangular hyperbola**.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 21|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE NUMERICAL ANSWER TYPE QUESTIONS|20 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 19|1 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity,then the equation |z-omega|^(2)+|z-omega^(2)|^(2)=lambda will represent a circle,if

Statement - 1 : a, b, c are three distinct real number and omega ne 1 is a cube root of unity, then |(a + b omega + c omega^(2))/(a omega ^(2) + b + c omega)|=1 Statement - 2 : z ne 0, |(z)/(bar(z))| = 1

Knowledge Check

  • If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

    A
    are vertices of an equilateral triangle
    B
    lie on a straight line
    C
    lie on a circle of radius `sqrt(3//2)`
    D
    None of these
  • If omega ne 1 is a cube root of unity, then z=sum_(k=1)^(60)omega^(k) - prod_(k=1)^(30)omega^(k) is equal to

    A
    0
    B
    `omega`
    C
    `omega^(2)`
    D
    -1
  • If omega complex cube root of unity, then ((1 + omega )/(omega ^(2)))^(3) =

    A
    1
    B
    `-1`
    C
    `omega`
    D
    `omega^(2)`
  • Similar Questions

    Explore conceptually related problems

    If omega is a cube root of unity, prove that (1+omega-omega^2)^3-(1-omega+omega^2)^3=0

    If omega is non-real cube roots of unity,then prove that |(x+y omega+z omega^(2))/(xw+z+y omega^(2))|=1

    If omega imaginary cube root of unity then the value of (|3 omega - 2 omega ^(2)| |1 - omega |)/( | 3 omega ^(2)-2| | omega ^(2) -1|) is

    Statement-1: If a,b,c are distinct real number and omega( ne 1) is a cube root of unity, then |(a+bomega+comega^(2))/(aomega^(2)+b+comega)|=1 Statement-2: For any non-zero complex number z,|z / bar z)|=1

    If omega (ne1) is a cube root of unity of A=[(1+2omega^(100), omega^(2),1),(1 ,1+2omega^(100),omega),(omega,omega^(2),2+omega^(100)+2omega^(200))] then