Home
Class 12
MATHS
A = ((2.1,2.5,3.7),(-2.1,5.9,3.8),(0,-2....

`A = ((2.1,2.5,3.7),(-2.1,5.9,3.8),(0,-2.9,-3)),B=((cosalpha,sinalpha,0),(sin alpha,cosalpha,0),(0,0,-1)) ,C=((cos alpha,sinalpha,0),(-sin alpha,cos alpha,0),(0,0,1))` then `sum_(k=0)^(oo)(1)/(3^(k))tr(A(BC)^(k))=`________

Text Solution

Verified by Experts

The correct Answer is:
14.25
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE /JEE Main Papers|71 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B -Architecture Entrance Examination Papers|22 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL -2 ) ( single Correct Answer Type Questions)|17 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A^(2)=[{:(cos2alpha,sin2alpha),(-sin2alpha,cos2alpha) :}].

If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , then (adjA)^(-1)=

Knowledge Check

  • If A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)] then A^(-1) is

    A
    A
    B
    `-A`
    C
    `adj(A)`
    D
    `-adj(A)`
  • Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

    A
    `A_(alpha+beta)=A_(alpha)A_(beta)`
    B
    `A_(alpha)^(-1)=A_(-alpha)`
    C
    `A_(alpha)^(-1)=-A_(alpha)`
    D
    `A_(alpha)^(2)=-I`
  • If Delta=|(cosalpha, -sinalpha,1),(sinalpha,cosalpha,1),(cos(alpha+theta),-sin(alpha+theta),1)| then

    A
    `Deltain[1-sqrt(2),1+sqrt2]`
    B
    `Deltain[-1,1]`
    C
    `Deltain[-sqrt2,sqrt2]`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Inverse of the matrix {:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:} is

    Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0,1)] then F(alpha), F (beta) is equal to

    If A=[(cos alpha,sin alpha),(-sin alpha,cos alpha)] and A. adj A=[(k,0),(0,k)] , then k is equal to

    If A=[{:(sinalpha,-cosalpha,0),(cosalpha,sinalpha,0),(0,0,1):}] then A^(-1) is equal to

    If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to