Home
Class 12
MATHS
If (Kn)/( Ln)= 1024 where K(n) = int(0)^...

If `(K_n)/( L_n)= 1024` where `K_(n) = int_(0)^(1) x^(n) (2-x)^(n) dx, L_(n) = int_(0)^(1) x^(n) (1-x)^(n) dx`, then `n` is equal to

Text Solution

Verified by Experts

The correct Answer is:
`2.50`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/ JEE Main Papers|65 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Single Correct Answer Type Questions|38 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(log(1)/(x))^(n-1)dx equals

If u_(n)=int(log x)^(n)dx, then u_(n)+nu_(n-1) is equal to :

Knowledge Check

  • If int_(0)^(1) x^(m) (1-x)^(n) dx= R int_(0)^(1) x^(n) (1-x)^(m) dx , then

    A
    R=1
    B
    `R= -1`
    C
    `R= 1//2`
    D
    None of these
  • If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

    A
    `(n)/(n+1) I_(m,n-1)`
    B
    `(-m)/(n+1) I_(m,n-1)`
    C
    `(-n)/(n+1) I_(m,n-1)`
    D
    `(m)/(n+1) I_(m,n-1)`
  • If m, n in N , then l_(m n) = int_(0)^(1) x^(m) (1-x)^(n) dx is equal to

    A
    `(m!n!)/((m+n+2)!`
    B
    `(2m!n!)/((m+n+1)!)`
    C
    `(m!n!)/((m+n+1)!)`
    D
    None of tese
  • Similar Questions

    Explore conceptually related problems

    U_(n)=int_(0)^(1)x^(n)(2-x)^(n)dx and V_(n)=int_(0)^(1)x^(n)(1-x)^(n)dx,n in N and if (V_(n))/(U_(n))=1024, then the value of n is

    What is int_(0)^(1) x(1-x)^(n)dx equal to ?

    If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

    If I_(m)=int_(0)^(oo) e^(-x)x^(n-1)dx, "then" int_(0)^(oo) e^(-lambdax) x^(n-1)dx

    For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to