Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
INDEFINITE INTEGRALS
AAKASH SERIES|Exercise MISCELLANEOUS QUESTIONS|98 VideosINDEFINITE INTEGRALS
AAKASH SERIES|Exercise ADDITIONAL INFORMATION|12 VideosINDEFINITE INTEGRALS
AAKASH SERIES|Exercise EXERCISE - 1.6 (SHORT ANSWER QUESTIONS )|37 VideosHYPERBOLA
AAKASH SERIES|Exercise Exercise|6 VideosLOGARITHMIC SERIES
AAKASH SERIES|Exercise EXERCISE - III|8 Videos
Similar Questions
Explore conceptually related problems
AAKASH SERIES-INDEFINITE INTEGRALS -EXERCISE - 1.7 (SHORT ANSWER QUESTIONS )
- Evalute the following integrals int x^(3) e^(2x) dx
Text Solution
|
- Evalute the following integrals int sin^(4) xdx
Text Solution
|
- int cos^(5)x dx=
Text Solution
|
- Evalute the following integrals int tan^(5) xdx
Text Solution
|
- int cos^(5)x dx=
Text Solution
|
- int sec^(4)x dx=
Text Solution
|
- Evalute the following integrals int "cosec"^(4) xdx
Text Solution
|
- Evaluate the integerals. int e ^(x)(1+x^(2)) dx
Text Solution
|
- Evalute the following integrals int sin^(4) "x cos"^(5) xdx
Text Solution
|
- Evaluate the integerals. int x ^(3) e ^(ax) dx a
Text Solution
|
- If I(n) = int x^(n) e^(-x) dx prove that I(n) = -x^(n) e^(-x) + nI(n-1...
Text Solution
|
- Obtain reduction formula for If I(n)=int (log x) ^(n)dx, then show...
Text Solution
|