Home
Class 10
MATHS
If a+b+c=0, then (a^(3) + b^(3) + c^(3) ...

If `a+b+c=0`, then `(a^(3) + b^(3) + c^(3) ) div (abc)` is equal to

A

1

B

2

C

3

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a^3 + b^3 + c^3) \div (abc)\) given that \(a + b + c = 0\). ### Step-by-Step Solution: 1. **Use the Algebraic Identity**: We start with the algebraic identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] This identity will help us relate \(a^3 + b^3 + c^3\) to \(abc\). 2. **Substitute the Given Condition**: Since we are given that \(a + b + c = 0\), we can substitute this into the identity: \[ a^3 + b^3 + c^3 - 3abc = 0 \cdot (a^2 + b^2 + c^2 - ab - ac - bc) \] The right-hand side simplifies to 0: \[ a^3 + b^3 + c^3 - 3abc = 0 \] 3. **Rearrange the Equation**: Now, we can rearrange the equation to isolate \(a^3 + b^3 + c^3\): \[ a^3 + b^3 + c^3 = 3abc \] 4. **Substitute into the Original Expression**: We need to find \((a^3 + b^3 + c^3) \div (abc)\): \[ \frac{a^3 + b^3 + c^3}{abc} = \frac{3abc}{abc} \] 5. **Simplify the Expression**: Now, we simplify the fraction: \[ \frac{3abc}{abc} = 3 \] ### Final Answer: Thus, \((a^3 + b^3 + c^3) \div (abc) = 3\). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONDITIONAL IDENTITIES

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|20 Videos
  • CODING-DECODING

    MCGROW HILL PUBLICATION|Exercise Exercise (Type VI)|5 Videos
  • DIRECTION SENSE SET

    MCGROW HILL PUBLICATION|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

a^(3) + b^(3) - c^(3) + 3abc

If a + b+c = 4 and ab + bc + ca = 2 , then a^(3) + b^(3) + c^(3) - 3abc is equal to :

Knowledge Check

  • If a+b+c = 8 and ab + bc + ca = 20 , then a^(3) + b^(3) + c^(3) - 3abc is equal to :

    A
    A)30
    B
    B)24
    C
    C)32
    D
    36
  • If a + b + c = 13 and ab + bc + ca = 54 , then a^(3) + b^(3) + c^(3) - 3abc is equal to :

    A
    A)793
    B
    B)273
    C
    C)91
    D
    D)182
  • If a + b + c = 6 and ab + bc + ca = 4 , then a^(3) + b^(3) + c^(3) - 3abc is equal to :

    A
    148
    B
    154
    C
    160
    D
    144
  • Similar Questions

    Explore conceptually related problems

    If a + b + c = 7 and ab +bc + ca = 1, then a^(3) + b^(3) + c^(3) - 3abc is equal to :

    If a + b + c = 5 and ab + cb + ca = 4 , then a^(3) + b^(3) + c^(3) - 3abc is equal to :

    If a + b + c = 11 and ab + bc + ca = 38 , then a^(3) + b^(3) + c^(3) - 3abc is equal to :

    If a + b + c = 8 and ab + bc + ca = 12, then a^(3) + b^(3) + c^(3) - 3abc is equal to :

    If a+b + c = 6 and ab + bc +ca = 5 , then a^(3) + b^(3) + c^(3) - 3abc is equal to :