Home
Class 10
MATHS
If a+b+c=0, then (a^(3) + b^(3) + c^(3) ...

If `a+b+c=0`, then `(a^(3) + b^(3) + c^(3) ) div (abc)` is equal to

A

1

B

2

C

3

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a^3 + b^3 + c^3) \div (abc)\) given that \(a + b + c = 0\). ### Step-by-Step Solution: 1. **Use the Algebraic Identity**: We start with the algebraic identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] This identity will help us relate \(a^3 + b^3 + c^3\) to \(abc\). 2. **Substitute the Given Condition**: Since we are given that \(a + b + c = 0\), we can substitute this into the identity: \[ a^3 + b^3 + c^3 - 3abc = 0 \cdot (a^2 + b^2 + c^2 - ab - ac - bc) \] The right-hand side simplifies to 0: \[ a^3 + b^3 + c^3 - 3abc = 0 \] 3. **Rearrange the Equation**: Now, we can rearrange the equation to isolate \(a^3 + b^3 + c^3\): \[ a^3 + b^3 + c^3 = 3abc \] 4. **Substitute into the Original Expression**: We need to find \((a^3 + b^3 + c^3) \div (abc)\): \[ \frac{a^3 + b^3 + c^3}{abc} = \frac{3abc}{abc} \] 5. **Simplify the Expression**: Now, we simplify the fraction: \[ \frac{3abc}{abc} = 3 \] ### Final Answer: Thus, \((a^3 + b^3 + c^3) \div (abc) = 3\). ---
Promotional Banner

Topper's Solved these Questions

  • CONDITIONAL IDENTITIES

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|20 Videos
  • CODING-DECODING

    MCGROW HILL PUBLICATION|Exercise Exercise (Type VI)|5 Videos
  • DIRECTION SENSE SET

    MCGROW HILL PUBLICATION|Exercise Exercise|26 Videos
MCGROW HILL PUBLICATION-CONDITIONAL IDENTITIES-MULTIPLE CHOICE QUESTIONS
  1. If a+b+c=0, then (a^(3) + b^(3) + c^(3) ) div (abc) is equal to

    Text Solution

    |

  2. If a+b+ c=0, then is (a^(4) + b^(4) + c^(4) )/( a^(2) b^(2) + b^(2) c^...

    Text Solution

    |

  3. If a+b+c=0, then (1)/( b^(2) + c^(2) - a^(2) ) +(1)/( c^(2) + a^(2) - ...

    Text Solution

    |

  4. If x+y+z=0, then (x^2)/( yz) + (y^2)/( zx) + (z^2)/( xy) is equal to

    Text Solution

    |

  5. If a+b+ 2c=0, then the value of a^(3) + b^(3) + 8c^(3) is equal to

    Text Solution

    |

  6. Evaluate the expression ((x-y)^(3) + (y-z)^(3) + (z-x)^(3) )/( (x-y) (...

    Text Solution

    |

  7. If x=a(b-c),\ \ y=b(c-a),\ \ z-c(a-b) , then the value of (x/a)^3+(y/b...

    Text Solution

    |

  8. If a+b+ c=0, then (a^(2)+ b^(2) + c^(2) )/( ab+ bc+ca) is equal to

    Text Solution

    |

  9. If a+b+c=0 then the value of ((a+b)(b+c) (c+a) )/(abc) is

    Text Solution

    |

  10. If a+b+c= 0 then the value of (a^(2) (b+ c) + b^(2) (c+a)+c^(2) ( a+ b...

    Text Solution

    |

  11. If a+ b+ c=0 then the value of (a+ b+ c)^(3) - (a^(3) - b^(3) -c^(3) )...

    Text Solution

    |

  12. If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c ...

    Text Solution

    |

  13. If x/(y+z)=a ;\ y/(z+x)=b and z/(x+y)=c , then 1/(1+a)+1/(1+b)+1/(1+c)...

    Text Solution

    |

  14. If a+ b=2c, then (a)/( a-c)+ ( c) /(b-c) is equal to

    Text Solution

    |

  15. (a^2-b^2-2b c-c^2)/(a^2+b^2+2a b-c^2) is equivalent to (a-b+c)/(a+b...

    Text Solution

    |

  16. If a= (x+y)/( z) , b= (y+z)/( x) and c= (z+ x)/( y), then the value of...

    Text Solution

    |

  17. If a^(2) = b+ c, b^(2) = c+ a, c^(2) =a+b , then the value of (1)/( a...

    Text Solution

    |

  18. If x=a+b, y= b+c , z=c+a, then the value of (x^(3) + y^(3) + z^(3) - 3...

    Text Solution

    |

  19. If x=a^(2) - bc, y=b^(2) - ca, z=c^(2) - ab then what is the value of ...

    Text Solution

    |

  20. If (a+b+c)^(2) = 3 (ab+ bc+ ca), then which one of the following is tr...

    Text Solution

    |