Home
Class 12
MATHS
Prove that cot(pi/4-2cot^(- 1)3)=7...

Prove that `cot(pi/4-2cot^(- 1)3)=7`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \cot\left(\frac{\pi}{4} - 2\cot^{-1}(3)\right) = 7 \), we will start with the left-hand side (LHS) and simplify it step by step. ### Step 1: Rewrite the expression We know that: \[ \cot\left(\frac{\pi}{4} - 2\cot^{-1}(3)\right) \] We can use the identity for \( \cot(A - B) \): \[ \cot(A - B) = \frac{\cot A \cot B + 1}{\cot B - \cot A} \] Here, \( A = \frac{\pi}{4} \) and \( B = 2\cot^{-1}(3) \). ### Step 2: Calculate \( \cot\left(\frac{\pi}{4}\right) \) We know that: \[ \cot\left(\frac{\pi}{4}\right) = 1 \] ### Step 3: Find \( \cot(2\cot^{-1}(3)) \) Using the double angle formula for cotangent: \[ \cot(2\theta) = \frac{\cot^2(\theta) - 1}{2\cot(\theta)} \] Let \( \theta = \cot^{-1}(3) \). Then \( \cot(\theta) = 3 \). Substituting into the formula: \[ \cot(2\cot^{-1}(3)) = \frac{3^2 - 1}{2 \cdot 3} = \frac{9 - 1}{6} = \frac{8}{6} = \frac{4}{3} \] ### Step 4: Substitute back into the cotangent difference formula Now we can substitute back into our expression: \[ \cot\left(\frac{\pi}{4} - 2\cot^{-1}(3)\right) = \frac{\cot\left(\frac{\pi}{4}\right) \cot(2\cot^{-1}(3)) + 1}{\cot(2\cot^{-1}(3)) - \cot\left(\frac{\pi}{4}\right)} \] Substituting the values we found: \[ = \frac{1 \cdot \frac{4}{3} + 1}{\frac{4}{3} - 1} \] ### Step 5: Simplify the numerator and denominator Calculating the numerator: \[ 1 \cdot \frac{4}{3} + 1 = \frac{4}{3} + \frac{3}{3} = \frac{7}{3} \] Calculating the denominator: \[ \frac{4}{3} - 1 = \frac{4}{3} - \frac{3}{3} = \frac{1}{3} \] ### Step 6: Final calculation Now substituting these back: \[ \cot\left(\frac{\pi}{4} - 2\cot^{-1}(3)\right) = \frac{\frac{7}{3}}{\frac{1}{3}} = 7 \] Thus, we have shown that: \[ \cot\left(\frac{\pi}{4} - 2\cot^{-1}(3)\right) = 7 \] ### Conclusion Hence, we have proved that: \[ \cot\left(\frac{\pi}{4} - 2\cot^{-1}(3)\right) = 7 \] ---

To prove that \( \cot\left(\frac{\pi}{4} - 2\cot^{-1}(3)\right) = 7 \), we will start with the left-hand side (LHS) and simplify it step by step. ### Step 1: Rewrite the expression We know that: \[ \cot\left(\frac{\pi}{4} - 2\cot^{-1}(3)\right) \] We can use the identity for \( \cot(A - B) \): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Prove that : cot^(-1) 3 + cot^(-1).(3)/(4) = cot^(-1) .(1)/(3)

Prove that cot^(-1)(13)+cot^(-1)(21)+cot^(-1)(-8)=pi .

The value of cot^(pi)/(4)-2 cot^(-13) is

Prove that : cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3

Prove that : cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3

Show that cot(pi/4+x)cot(pi/4-x)=1

Prove that cot^(-1) 9 + cosec^(-1) sqrt(41)/4 = pi/4

Prove: cot^(-1)(1/2)-1/2cot^(-1)(4/3)=pi/4

Prove that 4(cot^(- 1)3+c o s e c^(- 1)sqrt(5))=pi

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)