Home
Class 12
MATHS
If int(0)^(a) (1)/(1+4x^(2)) dx = pi/8, ...

If `int_(0)^(a) (1)/(1+4x^(2)) dx = pi/8`, then `a= `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral equation \[ \int_{0}^{a} \frac{1}{1 + 4x^2} \, dx = \frac{\pi}{8}, \] we will follow these steps: ### Step 1: Recognize the Integral Form We know that the integral \[ \int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C. \] In our case, we can rewrite the integrand: \[ \frac{1}{1 + 4x^2} = \frac{1}{1^2 + (2x)^2}. \] Here, \( a = \frac{1}{2} \). ### Step 2: Set Up the Integral Now we can express the integral: \[ \int_{0}^{a} \frac{1}{1 + 4x^2} \, dx = \int_{0}^{a} \frac{1}{1^2 + (2x)^2} \, dx. \] Using the formula, we have: \[ = \frac{1}{2} \tan^{-1}(2x) \bigg|_{0}^{a}. \] ### Step 3: Evaluate the Integral Now we evaluate the definite integral: \[ = \frac{1}{2} \left( \tan^{-1}(2a) - \tan^{-1}(0) \right). \] Since \( \tan^{-1}(0) = 0 \), we simplify to: \[ = \frac{1}{2} \tan^{-1}(2a). \] ### Step 4: Set the Equation Equal to \(\frac{\pi}{8}\) Now we set the expression equal to \(\frac{\pi}{8}\): \[ \frac{1}{2} \tan^{-1}(2a) = \frac{\pi}{8}. \] ### Step 5: Solve for \(\tan^{-1}(2a)\) Multiplying both sides by 2 gives: \[ \tan^{-1}(2a) = \frac{\pi}{4}. \] ### Step 6: Find \(2a\) Taking the tangent of both sides: \[ 2a = \tan\left(\frac{\pi}{4}\right) = 1. \] ### Step 7: Solve for \(a\) Dividing by 2: \[ a = \frac{1}{2}. \] Thus, the value of \(a\) is \[ \boxed{\frac{1}{2}}. \] ---

To solve the integral equation \[ \int_{0}^{a} \frac{1}{1 + 4x^2} \, dx = \frac{\pi}{8}, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(2x)/((1+x^(4)))dx

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

int_(0)^(a)(dx)/(4+x^(2))=(pi)/(8) , find a

int_(0)^(pi) (1)/(5+2 cos x)dx

If int_0^a1/(1+4x^2)dx=\ pi/8 , then a equals a. pi/2 b. pi/4 c. 1/2 d. 1

int_(0)^( pi)(dx)/(1+sin x)

int_(0)^( pi)(dx)/(1+cos x)

If I=int_0^(1) (1)/(1+x^(pi//2))dx , then\

int_(0)^( pi)(dx)/(1+cos^(2)x)

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to