If `int_(0)^(a) (1)/(1+4x^(2)) dx = pi/8`, then `a= `
Text Solution
AI Generated Solution
The correct Answer is:
To solve the integral equation
\[
\int_{0}^{a} \frac{1}{1 + 4x^2} \, dx = \frac{\pi}{8},
\]
we will follow these steps:
### Step 1: Recognize the Integral Form
We know that the integral
\[
\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C.
\]
In our case, we can rewrite the integrand:
\[
\frac{1}{1 + 4x^2} = \frac{1}{1^2 + (2x)^2}.
\]
Here, \( a = \frac{1}{2} \).
### Step 2: Set Up the Integral
Now we can express the integral:
\[
\int_{0}^{a} \frac{1}{1 + 4x^2} \, dx = \int_{0}^{a} \frac{1}{1^2 + (2x)^2} \, dx.
\]
Using the formula, we have:
\[
= \frac{1}{2} \tan^{-1}(2x) \bigg|_{0}^{a}.
\]
### Step 3: Evaluate the Integral
Now we evaluate the definite integral:
\[
= \frac{1}{2} \left( \tan^{-1}(2a) - \tan^{-1}(0) \right).
\]
Since \( \tan^{-1}(0) = 0 \), we simplify to:
\[
= \frac{1}{2} \tan^{-1}(2a).
\]
### Step 4: Set the Equation Equal to \(\frac{\pi}{8}\)
Now we set the expression equal to \(\frac{\pi}{8}\):
\[
\frac{1}{2} \tan^{-1}(2a) = \frac{\pi}{8}.
\]
### Step 5: Solve for \(\tan^{-1}(2a)\)
Multiplying both sides by 2 gives:
\[
\tan^{-1}(2a) = \frac{\pi}{4}.
\]
### Step 6: Find \(2a\)
Taking the tangent of both sides:
\[
2a = \tan\left(\frac{\pi}{4}\right) = 1.
\]
### Step 7: Solve for \(a\)
Dividing by 2:
\[
a = \frac{1}{2}.
\]
Thus, the value of \(a\) is
\[
\boxed{\frac{1}{2}}.
\]
---
To solve the integral equation
\[
\int_{0}^{a} \frac{1}{1 + 4x^2} \, dx = \frac{\pi}{8},
\]
we will follow these steps:
...