Home
Class 12
MATHS
Find the value of tan^(-1)(-1/(sqrt(3)))...

Find the value of `tan^(-1)(-1/(sqrt(3)))+cot^(-1)((1)/(sqrt(3))) + tan^(-1)[sin((-pi)/(2))]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}[\sin(-\frac{\pi}{2})] \), we will evaluate each term step by step. ### Step 1: Evaluate \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \) We know that: \[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \] Thus, \[ \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Since we have a negative value, we can write: \[ \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6} \] ### Step 2: Evaluate \( \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) \) We know that: \[ \cot\left(\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}} \] Thus, \[ \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{3} \] ### Step 3: Evaluate \( \tan^{-1}[\sin(-\frac{\pi}{2})] \) We know that: \[ \sin\left(-\frac{\pi}{2}\right) = -1 \] Thus, \[ \tan^{-1}(-1) = -\frac{\pi}{4} \] ### Step 4: Combine all the values Now we can substitute the values we found into the original expression: \[ \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}[\sin(-\frac{\pi}{2})] \] Substituting the values: \[ -\frac{\pi}{6} + \frac{\pi}{3} - \frac{\pi}{4} \] ### Step 5: Find a common denominator The least common multiple of the denominators \(6\), \(3\), and \(4\) is \(12\). We will convert each term: \[ -\frac{\pi}{6} = -\frac{2\pi}{12} \] \[ \frac{\pi}{3} = \frac{4\pi}{12} \] \[ -\frac{\pi}{4} = -\frac{3\pi}{12} \] ### Step 6: Combine the fractions Now we can combine the fractions: \[ -\frac{2\pi}{12} + \frac{4\pi}{12} - \frac{3\pi}{12} = \frac{-2\pi + 4\pi - 3\pi}{12} = \frac{-1\pi}{12} = -\frac{\pi}{12} \] ### Final Answer Thus, the value of the expression is: \[ \boxed{-\frac{\pi}{12}} \]

To solve the expression \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}[\sin(-\frac{\pi}{2})] \), we will evaluate each term step by step. ### Step 1: Evaluate \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \) We know that: \[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin[tan^(- 1)(-sqrt(3))+cos^(- 1)((sqrt(3))/- 2)]

Find the value of tan^(-1) sqrt3 - cot^(-1) (-sqrt3)

Find the principal value of tan^(-1)(-sqrt(3))

Find the principal value of: tan^(-1)(-sqrt(3))

Find the principal value of tan^(-1)(-1/sqrt3) .

Evaluate: tan^(- 1)(-1/(sqrt(3)))+tan^(- 1)(-sqrt(3))+tan^(- 1)(sin(-pi/2))

Write the principal value of tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3)) .

Find the value of tan(sin^(-1)(3/5)+cot^(-1)(3/2))

The value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+tan^(-1)(sqrt3) is

Find the value of sec^(-1)(-2)+tan^(-1)(-1/sqrt3)

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. Find the value of tan^(-1)(-1/(sqrt(3)))+cot^(-1)((1)/(sqrt(3))) + ta...

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |