Home
Class 12
MATHS
Find the value of tan^(-1)(-1/(sqrt(3)))...

Find the value of `tan^(-1)(-1/(sqrt(3)))+cot^(-1)((1)/(sqrt(3))) + tan^(-1)[sin((-pi)/(2))]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}[\sin(-\frac{\pi}{2})] \), we will evaluate each term step by step. ### Step 1: Evaluate \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \) We know that: \[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \] Thus, \[ \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Since we have a negative value, we can write: \[ \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6} \] ### Step 2: Evaluate \( \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) \) We know that: \[ \cot\left(\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}} \] Thus, \[ \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{3} \] ### Step 3: Evaluate \( \tan^{-1}[\sin(-\frac{\pi}{2})] \) We know that: \[ \sin\left(-\frac{\pi}{2}\right) = -1 \] Thus, \[ \tan^{-1}(-1) = -\frac{\pi}{4} \] ### Step 4: Combine all the values Now we can substitute the values we found into the original expression: \[ \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}[\sin(-\frac{\pi}{2})] \] Substituting the values: \[ -\frac{\pi}{6} + \frac{\pi}{3} - \frac{\pi}{4} \] ### Step 5: Find a common denominator The least common multiple of the denominators \(6\), \(3\), and \(4\) is \(12\). We will convert each term: \[ -\frac{\pi}{6} = -\frac{2\pi}{12} \] \[ \frac{\pi}{3} = \frac{4\pi}{12} \] \[ -\frac{\pi}{4} = -\frac{3\pi}{12} \] ### Step 6: Combine the fractions Now we can combine the fractions: \[ -\frac{2\pi}{12} + \frac{4\pi}{12} - \frac{3\pi}{12} = \frac{-2\pi + 4\pi - 3\pi}{12} = \frac{-1\pi}{12} = -\frac{\pi}{12} \] ### Final Answer Thus, the value of the expression is: \[ \boxed{-\frac{\pi}{12}} \]

To solve the expression \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}[\sin(-\frac{\pi}{2})] \), we will evaluate each term step by step. ### Step 1: Evaluate \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \) We know that: \[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin[tan^(- 1)(-sqrt(3))+cos^(- 1)((sqrt(3))/- 2)]

Find the value of tan^(-1) sqrt3 - cot^(-1) (-sqrt3)

Find the principal value of tan^(-1)(-sqrt(3))

Find the principal value of: tan^(-1)(-sqrt(3))

Find the principal value of tan^(-1)(-1/sqrt3) .

Evaluate: tan^(- 1)(-1/(sqrt(3)))+tan^(- 1)(-sqrt(3))+tan^(- 1)(sin(-pi/2))

Write the principal value of tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3)) .

Find the value of tan(sin^(-1)(3/5)+cot^(-1)(3/2))

The value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+tan^(-1)(sqrt3) is

Find the value of sec^(-1)(-2)+tan^(-1)(-1/sqrt3)