Home
Class 12
MATHS
int(sin^(- 1)x)/((1-x^2)^(3/2))dx...

`int(sin^(- 1)x)/((1-x^2)^(3/2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin^{-1} x}{(1 - x^2)^{3/2}} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \sin^{-1} x \). Then, we have: \[ x = \sin t \] Differentiating both sides gives: \[ dx = \cos t \, dt \] ### Step 2: Rewrite the Integral Substituting \( x \) and \( dx \) into the integral, we get: \[ I = \int \frac{t}{(1 - \sin^2 t)^{3/2}} \cos t \, dt \] Using the identity \( 1 - \sin^2 t = \cos^2 t \), we can simplify the integral: \[ I = \int \frac{t}{(\cos^2 t)^{3/2}} \cos t \, dt = \int \frac{t}{\cos^3 t} \cos t \, dt = \int \frac{t}{\cos^2 t} \, dt \] ### Step 3: Simplifying the Integral Now we can rewrite the integral as: \[ I = \int t \sec^2 t \, dt \] ### Step 4: Integration by Parts Using integration by parts, let: - \( u = t \) → \( du = dt \) - \( dv = \sec^2 t \, dt \) → \( v = \tan t \) Applying the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I = t \tan t - \int \tan t \, dt \] ### Step 5: Integrate \( \tan t \) The integral of \( \tan t \) is: \[ \int \tan t \, dt = -\log |\cos t| + C \] Thus, we have: \[ I = t \tan t + \log |\cos t| + C \] ### Step 6: Substitute Back Now substitute back \( t = \sin^{-1} x \): \[ I = \sin^{-1} x \tan(\sin^{-1} x) + \log |\cos(\sin^{-1} x)| + C \] Using the identity \( \tan(\sin^{-1} x) = \frac{x}{\sqrt{1 - x^2}} \) and \( \cos(\sin^{-1} x) = \sqrt{1 - x^2} \), we can write: \[ I = \sin^{-1} x \cdot \frac{x}{\sqrt{1 - x^2}} + \log |\sqrt{1 - x^2}| + C \] ### Final Answer Thus, the final answer is: \[ I = \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} + \frac{1}{2} \log(1 - x^2) + C \]

To solve the integral \( I = \int \frac{\sin^{-1} x}{(1 - x^2)^{3/2}} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \sin^{-1} x \). Then, we have: \[ x = \sin t \] Differentiating both sides gives: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

int(sin^(- 1)x)/((1-x^2)^(1/2)) dx

Find : int_0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)^(3/2))dx

Evaluate: int_(0)^(1//2) (sin^(-1)x)/((1-x^(2))^(3//2)) dx

Evaluate : int(x^(2) sin^(-1)x)/((1-x^(2))^((3)/(2)))dx

Evaluate: int(sin^(-1)x)/((1-x^2)^(3setminus2))\ dx

int sin^-1x +x/(1-x^2)dx

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx

Evaluate: int(sin^(-1)x)/(sqrt(1-x^2))\ dx

Evaluate: int(x^2sin^(-1)x)/((1-x^2)^(3setminus2))\ dx

Evaluate: (i) int((sin^(-1)x)^3)/(sqrt(1-x^2))\ dx (ii) int(sin(2+3logx)/x\ dx