Home
Class 12
MATHS
Evaluate: int(cos2x-cos2theta)/(cosx-cos...

Evaluate: `int(cos2x-cos2theta)/(cosx-costheta)dx`

A

`2(sinx+xcostheta) + C`

B

`2(sinx - xcos theta) + C`

C

`2(sinx+2xcostheta) + C`

D

`2(sinx-2x cos theta)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} \, dx, \] we can follow these steps: ### Step 1: Rewrite the numerator using the double angle formula We know that \[ \cos 2x = 2 \cos^2 x - 1 \quad \text{and} \quad \cos 2\theta = 2 \cos^2 \theta - 1. \] Thus, we can rewrite the integral as: \[ I = \int \frac{(2 \cos^2 x - 1) - (2 \cos^2 \theta - 1)}{\cos x - \cos \theta} \, dx. \] ### Step 2: Simplify the numerator This simplifies to: \[ I = \int \frac{2 \cos^2 x - 2 \cos^2 \theta}{\cos x - \cos \theta} \, dx. \] Factoring out the 2 gives us: \[ I = 2 \int \frac{\cos^2 x - \cos^2 \theta}{\cos x - \cos \theta} \, dx. \] ### Step 3: Use the difference of squares The expression \(\cos^2 x - \cos^2 \theta\) can be factored using the difference of squares: \[ \cos^2 x - \cos^2 \theta = (\cos x - \cos \theta)(\cos x + \cos \theta). \] Substituting this back into the integral gives: \[ I = 2 \int \frac{(\cos x - \cos \theta)(\cos x + \cos \theta)}{\cos x - \cos \theta} \, dx. \] ### Step 4: Cancel out the common terms The \((\cos x - \cos \theta)\) terms cancel out: \[ I = 2 \int (\cos x + \cos \theta) \, dx. \] ### Step 5: Split the integral Now we can split the integral: \[ I = 2 \left( \int \cos x \, dx + \int \cos \theta \, dx \right). \] ### Step 6: Evaluate the integrals The integral of \(\cos x\) is \(\sin x\), and since \(\cos \theta\) is a constant, we have: \[ \int \cos \theta \, dx = \cos \theta \cdot x. \] Putting it all together, we get: \[ I = 2 \left( \sin x + \cos \theta \cdot x \right) + C, \] where \(C\) is the constant of integration. ### Final Result Thus, the final result is: \[ I = 2 \sin x + 2 x \cos \theta + C. \] ---

To evaluate the integral \[ I = \int \frac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} \, dx, \] we can follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(cos2x-cos2alpha)/(cosx-cosalpha)\ dx

Evaluate: int(cos2x-cos2alpha)/(cosx-cosalpha)\ dxdot

Evaluate: int(cosx-cos2x)/(1-cosx)\ dx

Evaluate: int1/(cos3x-cosx)dx

int (cosx-cos2x)/(1-cosx) dx

Evaluate: int1/(cos3x-cosx)\ dx

Evaluate: int(cosx)/(cos3x)dx

Evaluate: int(cosx)/(cos3x)dx

Evaluate : int(cos(x-alpha))/(cosx)dx .

Evaluate: int(cos4x-cos2x)/(sin4x-sin2x)dx