Home
Class 12
MATHS
int(0)^(1) (dx)/(e^(x)+e^(-x))...

`int_(0)^(1) (dx)/(e^(x)+e^(-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}}, \] we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ e^{x} + e^{-x} = \frac{e^{2x} + 1}{e^{x}}. \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{1} \frac{dx}{\frac{e^{2x} + 1}{e^{x}}} = \int_{0}^{1} \frac{e^{x} \, dx}{e^{2x} + 1}. \] ### Step 2: Substitution Next, we will use the substitution \( t = e^{x} \). Then, we have: \[ dt = e^{x} \, dx \quad \Rightarrow \quad dx = \frac{dt}{t}. \] When \( x = 0 \), \( t = e^{0} = 1 \). When \( x = 1 \), \( t = e^{1} = e \). Thus, the limits of integration change from \( 0 \) to \( 1 \) to \( 1 \) to \( e \). Substituting these into the integral gives: \[ I = \int_{1}^{e} \frac{1}{t^{2} + 1} \, dt. \] ### Step 3: Evaluate the integral We know that the integral \[ \int \frac{1}{t^{2} + 1} \, dt = \tan^{-1}(t) + C. \] Thus, we can evaluate: \[ I = \left[ \tan^{-1}(t) \right]_{1}^{e} = \tan^{-1}(e) - \tan^{-1}(1). \] ### Step 4: Simplify the result We know that \[ \tan^{-1}(1) = \frac{\pi}{4}. \] Therefore, the result becomes: \[ I = \tan^{-1}(e) - \frac{\pi}{4}. \] ### Final Result Thus, the value of the integral is: \[ I = \tan^{-1}(e) - \frac{\pi}{4}. \] ---

To solve the integral \[ I = \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}}, \] we can follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) x e^(x) dx=1

int_0^1(e^x dx)/(1+e^x)

Knowledge Check

  • If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

    A
    `k-1+(e )/(2)`
    B
    `k + 1 - ( e )/( 2)`
    C
    `k - 1 - ( e)/(2)`
    D
    `k+1+(e )/(2)`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^(1)e^(2x)e^(e^(x) dx =)

    (11) int_(0)^(1)(e^x-e^-x)/(e^x+e^-x)dx

    Evaluate the integral as limit of sum: int_(0)^(1) (e^(2x)-e^(x) +x) dx

    Evaluate the following: (i) int(sec^(2)x)/(3+tanx)dx " (ii) " int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx (iii) int(1-tanx)/(1+tanx)dx " (iv) " int(1)/(1+e^(-x))dx

    Evaluate : int_( (dx)/(e^(x)+e^(-x)) )

    Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

    int_(0)^(1)x e^(x^(2)) dx