To solve the integral
\[
I = \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}},
\]
we can follow these steps:
### Step 1: Rewrite the integrand
We start by rewriting the integrand:
\[
e^{x} + e^{-x} = \frac{e^{2x} + 1}{e^{x}}.
\]
Thus, we can rewrite the integral as:
\[
I = \int_{0}^{1} \frac{dx}{\frac{e^{2x} + 1}{e^{x}}} = \int_{0}^{1} \frac{e^{x} \, dx}{e^{2x} + 1}.
\]
### Step 2: Substitution
Next, we will use the substitution \( t = e^{x} \). Then, we have:
\[
dt = e^{x} \, dx \quad \Rightarrow \quad dx = \frac{dt}{t}.
\]
When \( x = 0 \), \( t = e^{0} = 1 \). When \( x = 1 \), \( t = e^{1} = e \). Thus, the limits of integration change from \( 0 \) to \( 1 \) to \( 1 \) to \( e \).
Substituting these into the integral gives:
\[
I = \int_{1}^{e} \frac{1}{t^{2} + 1} \, dt.
\]
### Step 3: Evaluate the integral
We know that the integral
\[
\int \frac{1}{t^{2} + 1} \, dt = \tan^{-1}(t) + C.
\]
Thus, we can evaluate:
\[
I = \left[ \tan^{-1}(t) \right]_{1}^{e} = \tan^{-1}(e) - \tan^{-1}(1).
\]
### Step 4: Simplify the result
We know that
\[
\tan^{-1}(1) = \frac{\pi}{4}.
\]
Therefore, the result becomes:
\[
I = \tan^{-1}(e) - \frac{\pi}{4}.
\]
### Final Result
Thus, the value of the integral is:
\[
I = \tan^{-1}(e) - \frac{\pi}{4}.
\]
---
To solve the integral
\[
I = \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}},
\]
we can follow these steps:
...
Topper's Solved these Questions
INTEGRALS
NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos