Home
Class 12
MATHS
int (x+3)/(x+4)^(2)e^(x)\ dx is equal to...

`int (x+3)/(x+4)^(2)e^(x)\ dx` is equal to

A

`e^(x)((1)/(x+4))+C`

B

`e^(-x)((1)/(x+4))+C`

C

`e^(-x)((1)/(x-4))+C`

D

`e^(2x)((1)/(x-4))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{x+3}{(x+4)^2} e^x \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( x + 3 \) as \( (x + 4) - 1 \): \[ I = \int \frac{(x + 4) - 1}{(x + 4)^2} e^x \, dx \] This simplifies to: \[ I = \int \left( \frac{x + 4}{(x + 4)^2} - \frac{1}{(x + 4)^2} \right) e^x \, dx \] ### Step 2: Simplify the integral Now, we can separate the integral into two parts: \[ I = \int \frac{1}{x + 4} e^x \, dx - \int \frac{1}{(x + 4)^2} e^x \, dx \] ### Step 3: Identify the first integral Let’s denote: \[ f(x) = \frac{1}{x + 4} \] Then, the derivative \( f'(x) \) is: \[ f'(x) = -\frac{1}{(x + 4)^2} \] Thus, we can rewrite the second integral: \[ \int \frac{1}{(x + 4)^2} e^x \, dx = -\int f'(x) e^x \, dx \] ### Step 4: Apply the integration by parts formula Using the formula for integration of the product of a function and its derivative: \[ \int e^x f(x) + e^x f'(x) \, dx = e^x f(x) + C \] We can combine the two integrals: \[ I = \int e^x f(x) \, dx \] ### Step 5: Solve the integral Now substituting back: \[ I = e^x f(x) + C = e^x \cdot \frac{1}{x + 4} + C \] ### Final Answer Thus, the integral evaluates to: \[ I = \frac{e^x}{x + 4} + C \] ---

To solve the integral \( I = \int \frac{x+3}{(x+4)^2} e^x \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( x + 3 \) as \( (x + 4) - 1 \): \[ I = \int \frac{(x + 4) - 1}{(x + 4)^2} e^x \, dx \] This simplifies to: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

int(x+1)^(2)e^(x)dx is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to

Knowledge Check

  • int (dx)/( e^(x) + e^(-x) +2) is equal to

    A
    `(1)/( e^(x) +1) +C`
    B
    `(1)/( 1 + e^(-x)) + C`
    C
    `- ( 1)/( e^(x) +1) + C`
    D
    none of these
  • int ( x )/( 4+ x^(4)) dx is equal to

    A
    `(1)/( 4) tan^(-1) x^(2) + C`
    B
    `(1)/( 2) tan^(-1) ""(x^(2)/(2)) +C`
    C
    `(1)/(4) tan^(-1) ( (x^(2))/( 2)) + C`
    D
    `(1)/(2) tan^(-1) 2 x^(2) + C`
  • Similar Questions

    Explore conceptually related problems

    int ((x+2)/(x+4))^2 e^x dx is equal to

    int x^3 e^(x^2) dx is equal to

    int (x-2)/(x^(3)).e^(x) dx

    int((x+2)/(x+4))^2 e^xdx is equal to

    int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to