Home
Class 12
MATHS
Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x...

`Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x}))`, where `{x}` denotes the fractional part of x.
`R=lim_(xto0+) f(x)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( R = \lim_{x \to 0^+} f(x) \) where \[ f(x) = \frac{\sin^{-1}(1 - \{x\}) \cdot \cos^{-1}(1 - \{x\})}{\sqrt{2\{x\}} \cdot (1 - \{x\})} \] we start by analyzing the fractional part of \( x \), denoted as \( \{x\). The fractional part can be expressed as: \[ \{x\} = x - \lfloor x \rfloor \] As \( x \) approaches \( 0^+ \), the greatest integer function \( \lfloor x \rfloor \) will be \( 0 \). Therefore, we have: \[ \{x\} = x \] Substituting this into \( f(x) \): \[ f(x) = \frac{\sin^{-1}(1 - x) \cdot \cos^{-1}(1 - x)}{\sqrt{2x} \cdot (1 - x)} \] Next, we need to evaluate the limit as \( x \) approaches \( 0^+ \): \[ R = \lim_{x \to 0^+} \frac{\sin^{-1}(1 - x) \cdot \cos^{-1}(1 - x)}{\sqrt{2x} \cdot (1 - x)} \] As \( x \to 0^+ \): - \( \sin^{-1}(1 - x) \to \sin^{-1}(1) = \frac{\pi}{2} \) - \( \cos^{-1}(1 - x) \to \cos^{-1}(1) = 0 \) Thus, the limit takes the form \( \frac{\frac{\pi}{2} \cdot 0}{\sqrt{2 \cdot 0} \cdot 1} \), which is \( \frac{0}{0} \), an indeterminate form. We can apply L'Hôpital's Rule. To apply L'Hôpital's Rule, we differentiate the numerator and denominator separately: 1. **Differentiate the numerator**: \[ \frac{d}{dx} \left( \sin^{-1}(1 - x) \cdot \cos^{-1}(1 - x) \right) \] Using the product rule: \[ u = \sin^{-1}(1 - x), \quad v = \cos^{-1}(1 - x) \] \[ \frac{du}{dx} = -\frac{1}{\sqrt{1 - (1 - x)^2}} = -\frac{1}{\sqrt{2x - x^2}} \] \[ \frac{dv}{dx} = -\frac{1}{\sqrt{1 - (1 - x)^2}} = -\frac{1}{\sqrt{2x - x^2}} \] Thus, \[ \frac{d}{dx} (uv) = u \frac{dv}{dx} + v \frac{du}{dx} \] 2. **Differentiate the denominator**: \[ \frac{d}{dx} \left( \sqrt{2x} \cdot (1 - x) \right) \] Using the product rule: \[ \frac{d}{dx}(\sqrt{2x}) = \frac{1}{\sqrt{2x}} \cdot 1 = \frac{1}{\sqrt{2x}}, \quad \frac{d}{dx}(1 - x) = -1 \] So, \[ \frac{d}{dx}(\sqrt{2x}(1 - x)) = \sqrt{2x} \cdot (-1) + (1 - x) \cdot \frac{1}{\sqrt{2x}} = -\sqrt{2x} + \frac{1 - x}{\sqrt{2x}} \] Now we can apply L'Hôpital's Rule: \[ R = \lim_{x \to 0^+} \frac{\text{Numerator's derivative}}{\text{Denominator's derivative}} \] After applying L'Hôpital's Rule and simplifying, we will find the limit as \( x \to 0^+ \). Finally, substituting \( x = 0 \) into the simplified expression will yield the final result. ### Final Result: \[ R = \frac{\pi}{2} \cdot \frac{1}{\sqrt{2}} = \frac{\pi}{2\sqrt{2}} \]

To solve the limit \( R = \lim_{x \to 0^+} f(x) \) where \[ f(x) = \frac{\sin^{-1}(1 - \{x\}) \cdot \cos^{-1}(1 - \{x\})}{\sqrt{2\{x\}} \cdot (1 - \{x\})} \] we start by analyzing the fractional part of \( x \), denoted as \( \{x\). The fractional part can be expressed as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. L= lim_(xto0-) f(x) is equal to

let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} denotes the fractional part of x then

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

lim_(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part of x) is equal to

If {x} denotes the fractional part of x, then lim_(xrarr1) (x sin {x})/(x-1) , is

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

lim_(x->oo ){(e^x+pi^x)^(1/x)}= where {.} denotes the fractional part of x is equal to

lim_(xrarroo) {(e^(x)+pi^(x))^((1)/(x))} = (where {.} denotes the fractional part of x ) is equal to

lim_(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to:

The range of f(x) =sin(sin^(-1){x}) . where { ·} denotes the fractional part of x, is