Home
Class 12
MATHS
Let f(x)={{:(1+(2x)/(a)", "0lexlt1),(ax"...

Let `f(x)={{:(1+(2x)/(a)", "0lexlt1),(ax", "1lexlt2):}."If" lim_(xto1) "f(x) exists, then a is "`

A

`underset(xto5^(-))f(x)=0`

B

`underset(xto5^(+))f(x)=1`

C

`underset(xto5)lim f(x)` does not exist

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) such that the limit of the function \( f(x) \) exists as \( x \) approaches 1. The function is defined as follows: \[ f(x) = \begin{cases} 1 + \frac{2x}{a} & \text{if } 0 \leq x < 1 \\ ax & \text{if } 1 \leq x < 2 \end{cases} \] ### Step 1: Find the left-hand limit as \( x \) approaches 1 The left-hand limit is given by: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \left(1 + \frac{2x}{a}\right) \] Substituting \( x = 1 \): \[ \lim_{x \to 1^-} f(x) = 1 + \frac{2 \cdot 1}{a} = 1 + \frac{2}{a} \] ### Step 2: Find the right-hand limit as \( x \) approaches 1 The right-hand limit is given by: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (ax) \] Substituting \( x = 1 \): \[ \lim_{x \to 1^+} f(x) = a \cdot 1 = a \] ### Step 3: Set the left-hand limit equal to the right-hand limit For the limit to exist, the left-hand limit must equal the right-hand limit: \[ 1 + \frac{2}{a} = a \] ### Step 4: Solve for \( a \) Rearranging the equation gives: \[ 1 + \frac{2}{a} = a \] Multiplying through by \( a \) (assuming \( a \neq 0 \)): \[ a + 2 = a^2 \] Rearranging this gives us a quadratic equation: \[ a^2 - a - 2 = 0 \] ### Step 5: Factor the quadratic equation We can factor the quadratic equation: \[ (a - 2)(a + 1) = 0 \] ### Step 6: Find the roots Setting each factor to zero gives us: \[ a - 2 = 0 \quad \Rightarrow \quad a = 2 \] \[ a + 1 = 0 \quad \Rightarrow \quad a = -1 \] ### Conclusion Thus, the values of \( a \) for which the limit exists are: \[ a = 2 \quad \text{and} \quad a = -1 \]

To solve the problem, we need to find the value of \( a \) such that the limit of the function \( f(x) \) exists as \( x \) approaches 1. The function is defined as follows: \[ f(x) = \begin{cases} 1 + \frac{2x}{a} & \text{if } 0 \leq x < 1 \\ ax & \text{if } 1 \leq x < 2 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

Let f(x)={1+(2x)/a ,0lt=x<1 and ax ,1lt=x<2 If lim_(x->1)f(x) exists ,then a is (a) 1 (b) -1 (c) 2 (d) -2

Let f(x)={:{(x+2",",xle-1),(cx^(2)",",xgt-1):} If Lt_(xto-1) f(x) exists, then c is (i) -1 (ii) 1 (iii) 2 (iv) -2

Evaluate the left- and right-hand limits of the function defined f(x)={{:(1+x^(2)",if "0lexlt1),(2-x", if" xgt1):}"at "x=1. "Also, show that lim_(xto1) f(x) does not exist.

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

if f(x) = {{:(x+2",",xle-1),(cx^(2)",",xgt-1):}, then find c when lim(xto-1)f(x) exists.

Letf(x)={{:(x+1,", "if xge0),(x-1,", "if xlt0):}".Then prove that" lim_(xto0) f(x) does not exist.

Let f(x)={{:((1+sinx)",","when "0lexlt(pi)/(2)),(1","," when "xlt0):} . Find Rf'(0)

Let f(x)={(-,1, -2lexlt0),(x^2,-1,0lexlt2):} if g(x)=|f(x)|+f(|x|) then g(x) in (-2,2) is (A) not continuous is (B) not differential at one point (C) differential at all points (D) not differential at two points

CENGAGE ENGLISH-LIMITS-Multiple Correct Answers Type
  1. Let f(x)={{:(1+(2x)/(a)", "0lexlt1),(ax", "1lexlt2):}."If" lim(xto1)...

    Text Solution

    |

  2. If f(x)=|x-1|-[x], where [x] is the greatest integer less than or equa...

    Text Solution

    |

  3. ("lim")(n→oo)(a n-(1+n^2)/(1+n))=b , where a is a finite number, then ...

    Text Solution

    |

  4. If m,n inN,lim(xto0) (sinx^(n))/((sinx)^(m)) is

    Text Solution

    |

  5. Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},...

    Text Solution

    |

  6. If L=lim(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

    Text Solution

    |

  7. Which of the following is true ({.} denotes the fractional part of the...

    Text Solution

    |

  8. Which of the following is/are correct?

    Text Solution

    |

  9. If lim(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the val...

    Text Solution

    |

  10. L=("lim")(xveca)(|2sinx-1|)/(2sinx-1)dotT h e n limit does not exist ...

    Text Solution

    |

  11. Let f(x)=lim(ntooo) (x)/(x^(2n)+1). Then f has

    Text Solution

    |

  12. lim(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

    Text Solution

    |

  13. Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2)...

    Text Solution

    |

  14. If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be c...

    Text Solution

    |

  15. The value of lim(ntooo) (1)/(1+nsin^(2)nx)" can be " (n inN)

    Text Solution

    |

  16. Lim x tending 5f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest i...

    Text Solution

    |

  17. Given lim(x to 0)(f(x))/(x^(2))=2, where [.] denotes the greatest inte...

    Text Solution

    |

  18. If f(a)=lim(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2...

    Text Solution

    |

  19. Let L=("lim")(xvec0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0. IfLi sfin i...

    Text Solution

    |

  20. Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

    Text Solution

    |