Home
Class 12
MATHS
Let f(x)={{:(1+(2x)/(a)", "0lexlt1),(ax"...

Let `f(x)={{:(1+(2x)/(a)", "0lexlt1),(ax", "1lexlt2):}."If" lim_(xto1) "f(x) exists, then a is "`

A

`underset(xto5^(-))f(x)=0`

B

`underset(xto5^(+))f(x)=1`

C

`underset(xto5)lim f(x)` does not exist

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) such that the limit of the function \( f(x) \) exists as \( x \) approaches 1. The function is defined as follows: \[ f(x) = \begin{cases} 1 + \frac{2x}{a} & \text{if } 0 \leq x < 1 \\ ax & \text{if } 1 \leq x < 2 \end{cases} \] ### Step 1: Find the left-hand limit as \( x \) approaches 1 The left-hand limit is given by: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \left(1 + \frac{2x}{a}\right) \] Substituting \( x = 1 \): \[ \lim_{x \to 1^-} f(x) = 1 + \frac{2 \cdot 1}{a} = 1 + \frac{2}{a} \] ### Step 2: Find the right-hand limit as \( x \) approaches 1 The right-hand limit is given by: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (ax) \] Substituting \( x = 1 \): \[ \lim_{x \to 1^+} f(x) = a \cdot 1 = a \] ### Step 3: Set the left-hand limit equal to the right-hand limit For the limit to exist, the left-hand limit must equal the right-hand limit: \[ 1 + \frac{2}{a} = a \] ### Step 4: Solve for \( a \) Rearranging the equation gives: \[ 1 + \frac{2}{a} = a \] Multiplying through by \( a \) (assuming \( a \neq 0 \)): \[ a + 2 = a^2 \] Rearranging this gives us a quadratic equation: \[ a^2 - a - 2 = 0 \] ### Step 5: Factor the quadratic equation We can factor the quadratic equation: \[ (a - 2)(a + 1) = 0 \] ### Step 6: Find the roots Setting each factor to zero gives us: \[ a - 2 = 0 \quad \Rightarrow \quad a = 2 \] \[ a + 1 = 0 \quad \Rightarrow \quad a = -1 \] ### Conclusion Thus, the values of \( a \) for which the limit exists are: \[ a = 2 \quad \text{and} \quad a = -1 \]

To solve the problem, we need to find the value of \( a \) such that the limit of the function \( f(x) \) exists as \( x \) approaches 1. The function is defined as follows: \[ f(x) = \begin{cases} 1 + \frac{2x}{a} & \text{if } 0 \leq x < 1 \\ ax & \text{if } 1 \leq x < 2 \end{cases} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

Let f(x)={1+(2x)/a ,0lt=x<1 and ax ,1lt=x<2 If lim_(x->1)f(x) exists ,then a is (a) 1 (b) -1 (c) 2 (d) -2

Knowledge Check

  • Let f(x)={:{(x+2",",xle-1),(cx^(2)",",xgt-1):} If Lt_(xto-1) f(x) exists, then c is (i) -1 (ii) 1 (iii) 2 (iv) -2

    A
    `-1`
    B
    1
    C
    2
    D
    `-2`
  • Similar Questions

    Explore conceptually related problems

    Evaluate the left- and right-hand limits of the function defined f(x)={{:(1+x^(2)",if "0lexlt1),(2-x", if" xgt1):}"at "x=1. "Also, show that lim_(xto1) f(x) does not exist.

    If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

    If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

    if f(x) = {{:(x+2",",xle-1),(cx^(2)",",xgt-1):}, then find c when lim(xto-1)f(x) exists.

    Letf(x)={{:(x+1,", "if xge0),(x-1,", "if xlt0):}".Then prove that" lim_(xto0) f(x) does not exist.

    Let f(x)={{:((1+sinx)",","when "0lexlt(pi)/(2)),(1","," when "xlt0):} . Find Rf'(0)

    Let f(x)={(-,1, -2lexlt0),(x^2,-1,0lexlt2):} if g(x)=|f(x)|+f(|x|) then g(x) in (-2,2) is (A) not continuous is (B) not differential at one point (C) differential at all points (D) not differential at two points