Home
Class 12
MATHS
y=f(x) satisfies the relation int(2)^(x)...

`y=f(x)` satisfies the relation `int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt`
The range of `y=f(x)` is

A

`[0,oo)`

B

`R`

C

`(-oo,0]`

D

`[-1/2,1/2]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the range of the function \( f(x) \) given the relation: \[ \int_{2}^{x} f(t) dt = \frac{x^2}{2} + \int_{x}^{2} t^2 f(t) dt \] ### Step 1: Differentiate both sides with respect to \( x \) We start by differentiating both sides of the equation with respect to \( x \). Using the Fundamental Theorem of Calculus on the left-hand side, we have: \[ \frac{d}{dx} \left( \int_{2}^{x} f(t) dt \right) = f(x) \] For the right-hand side, we differentiate each term: 1. The derivative of \( \frac{x^2}{2} \) is \( x \). 2. For the integral \( \int_{x}^{2} t^2 f(t) dt \), we apply the Leibniz rule: \[ \frac{d}{dx} \left( \int_{x}^{2} t^2 f(t) dt \right) = -x^2 f(x) \] Putting it all together, we get: \[ f(x) = x - x^2 f(x) \] ### Step 2: Rearranging the equation Now, we rearrange the equation to isolate \( f(x) \): \[ f(x) + x^2 f(x) = x \] Factoring out \( f(x) \): \[ f(x)(1 + x^2) = x \] ### Step 3: Solve for \( f(x) \) Now, we can solve for \( f(x) \): \[ f(x) = \frac{x}{1 + x^2} \] ### Step 4: Find the range of \( f(x) \) To find the range of \( f(x) = \frac{x}{1 + x^2} \), we set \( y = f(x) \): \[ y = \frac{x}{1 + x^2} \] Rearranging gives us: \[ y(1 + x^2) = x \implies yx^2 - x + y = 0 \] This is a quadratic equation in \( x \). For \( x \) to have real solutions, the discriminant must be non-negative: \[ D = (-1)^2 - 4(y)(y) \geq 0 \] Calculating the discriminant: \[ 1 - 4y^2 \geq 0 \] ### Step 5: Solve the inequality Solving the inequality: \[ 1 \geq 4y^2 \implies y^2 \leq \frac{1}{4} \] Taking the square root gives: \[ -\frac{1}{2} \leq y \leq \frac{1}{2} \] ### Conclusion Thus, the range of the function \( f(x) \) is: \[ \boxed{[-\frac{1}{2}, \frac{1}{2}]} \]

To solve the problem, we need to find the range of the function \( f(x) \) given the relation: \[ \int_{2}^{x} f(t) dt = \frac{x^2}{2} + \int_{x}^{2} t^2 f(t) dt \] ### Step 1: Differentiate both sides with respect to \( x \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of int_(-2)^(2)f(x)dx is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let y = f(x) be a differentiable curve satisfying int_(2)^(x)f(t)dt=(x^(2))/(2)+int_(x)^(2)t^(2)f(t)dt , then int_(-pi//4)^(pi//4)(f(x)+x^(9)-x^(3)+x+1)/(cos^(2)x)dx equals :

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x+int_(0)^(x)(x-t)f^(')(t)dt The value of f(0)+f^(')(0) equal (a) -1 (b) 0 (c) 1 (d) none of these