Home
Class 12
MATHS
If f(x) is integrable over [1,2] then in...

If `f(x)` is integrable over `[1,2]` then `int_(1)^(2)f(x)dx` is equal to (a) `lim_(nto oo) 1/n sum_(r=1)^(n)f(r/n)` (b) `lim_(nto oo) 1/n sum_(r=n+1)^(2n) f(r/n)` (c) `lim_(nto oo) 1/n sum_(r=1)^(n)f((r+n)/n)` (d) `lim_(nto oo) 1/n sum_(r=1)^(2n)f(r/n)`

A

(a) `lim_(nto oo) 1/n sum_(r=1)^(n)f(r/n)`

B

`lim_(nto oo) 1/n sum_(r=n+1)^(2n) f(r/n)`

C

`lim_(nto oo) 1/n sum_(r=1)^(n)f((r+n)/n)`

D

`lim_(nto oo) 1/n sum_(r=1)^(2n)f(r/n)`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`lim_(nto oo) 1/n sum_(r=n+1)^(2n)f(r/n)=int_(1)^(2) f(x)dx`
`lim_(nto oo) 1/n sum_(r=1)^(n)f((r+n)/n)=int_(0)^(1)f(1+x)dx=int_(1)^(2)dx=int_(1)^(2)f(t)dt=int_(1)^(2)f(x)dx`
`lim_(nto oo) 1/n sum_(r=1)^(n)f(r/n)=int_(0)^(1)f(x)dx`
`lim_(n to oo) 1/n sum_(r=1)^(2n) f(r/n)=int_(0)^(2)f(x)dx`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(x) is integrable over [1,2], then int_1^2f(x)dx is equal to (a) ("lim")_(ntooo)1/nsum_(r=1)^nf(r/n) (b) ("lim")_(ntooo)1/nsum_(r=n+1)^(2n)f(r/n) (c) ("lim")_(ntooo)1/nsum_(r=1)^nf((r+n)/n) (d) ("lim")_(ntooo)1/nsum_(r=1)^(2n)f(r/n)

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

Evaluate lim_(n->oo)1/nsum_(r=n+1)^(2n)log_e(1+r/n)

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :