Home
Class 12
MATHS
By the method of matrix inversion, solve...

By the method of matrix inversion, solve the system.
`[(1,1,1),(2,5,7),(2,1,-1)][(x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3))]=[(9,2),(52,15),(0,-1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the method of matrix inversion, we start with the given matrix equation: \[ A \cdot X = B \] Where: \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 5 & 7 \\ 2 & 1 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad B = \begin{pmatrix} 9 \\ 52 \\ 0 \end{pmatrix} \] ### Step 1: Find the Determinant of Matrix A To find the inverse of matrix A, we first need to calculate its determinant. \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 5 & 7 \\ 1 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 7 \\ 2 & -1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 5 \\ 2 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 5 & 7 \\ 1 & -1 \end{vmatrix} = (5)(-1) - (7)(1) = -5 - 7 = -12\) 2. \(\begin{vmatrix} 2 & 7 \\ 2 & -1 \end{vmatrix} = (2)(-1) - (7)(2) = -2 - 14 = -16\) 3. \(\begin{vmatrix} 2 & 5 \\ 2 & 1 \end{vmatrix} = (2)(1) - (5)(2) = 2 - 10 = -8\) Now substituting back: \[ \text{det}(A) = 1 \cdot (-12) - 1 \cdot (-16) + 1 \cdot (-8) = -12 + 16 - 8 = -4 \] ### Step 2: Find the Adjoint of Matrix A Next, we need to find the cofactor matrix of A and then take its transpose to find the adjoint. Calculating the cofactors: 1. For \(C_{11}\): \(\begin{vmatrix} 5 & 7 \\ 1 & -1 \end{vmatrix} = -12\) 2. For \(C_{12}\): \(-\begin{vmatrix} 2 & 7 \\ 2 & -1 \end{vmatrix} = 16\) 3. For \(C_{13}\): \(\begin{vmatrix} 2 & 5 \\ 2 & 1 \end{vmatrix} = -8\) 4. For \(C_{21}\): \(-\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -(-2) = 2\) 5. For \(C_{22}\): \(\begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = -3\) 6. For \(C_{23}\): \(-\begin{vmatrix} 1 & 1 \\ 2 & 5 \end{vmatrix} = -3\) 7. For \(C_{31}\): \(\begin{vmatrix} 1 & 1 \\ 5 & 7 \end{vmatrix} = -2\) 8. For \(C_{32}\): \(-\begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} = -5\) 9. For \(C_{33}\): \(\begin{vmatrix} 1 & 1 \\ 2 & 5 \end{vmatrix} = -3\) The cofactor matrix is: \[ C = \begin{pmatrix} -12 & 16 & -8 \\ 2 & -3 & -3 \\ -2 & -5 & -3 \end{pmatrix} \] Taking the transpose to find the adjoint: \[ \text{adj}(A) = C^T = \begin{pmatrix} -12 & 2 & -2 \\ 16 & -3 & -5 \\ -8 & -3 & -3 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{-4} \cdot \begin{pmatrix} -12 & 2 & -2 \\ 16 & -3 & -5 \\ -8 & -3 & -3 \end{pmatrix} = \begin{pmatrix} 3 & -0.5 & 0.5 \\ -4 & 0.75 & 1.25 \\ 2 & 0.75 & 0.75 \end{pmatrix} \] ### Step 4: Multiply A^{-1} by B Now we compute \(X = A^{-1} \cdot B\): \[ B = \begin{pmatrix} 9 \\ 52 \\ 0 \end{pmatrix} \] Calculating the product: \[ X = \begin{pmatrix} 3 & -0.5 & 0.5 \\ -4 & 0.75 & 1.25 \\ 2 & 0.75 & 0.75 \end{pmatrix} \cdot \begin{pmatrix} 9 \\ 52 \\ 0 \end{pmatrix} \] Calculating each component: 1. \(x_1 = 3 \cdot 9 + (-0.5) \cdot 52 + 0.5 \cdot 0 = 27 - 26 = 1\) 2. \(x_2 = -4 \cdot 9 + 0.75 \cdot 52 + 1.25 \cdot 0 = -36 + 39 = 3\) 3. \(x_3 = 2 \cdot 9 + 0.75 \cdot 52 + 0.75 \cdot 0 = 18 + 39 = 57\) Thus, we have: \[ X = \begin{pmatrix} 1 \\ 3 \\ 57 \end{pmatrix} \] ### Conclusion The solution to the system of equations is: \[ x_1 = 1, \quad x_2 = 3, \quad x_3 = 57 \]

To solve the system of equations using the method of matrix inversion, we start with the given matrix equation: \[ A \cdot X = B \] Where: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Exercises|65 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A(x_(1), y_(1)), B(x_(2), y_(2)) and C (x_(3), y_(3)) are the vertices of a Delta ABC and (x, y) be a point on the internal bisector of angle A, then prove that b|(x,y,1),(x_(1),y_(1),1),(x_(2),y_(2),1)|+c|(x,y,1),(x_(1),y_(1),1),(x_(3),y_(3),1)|=0 where, AC = b and AB = c.

If the coordinates of the vertices of an equilateral triangle with sides of length a are (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) then |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|^2=(3a^(4))/4

If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=|{:(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1):}| , then the two triangles with vertices (x_(1),y_(1)) , (x_(2),y_(2)) , (x_(3),y_(3)) and (a_(1),b_(1)) , (a_(2),b_(2)) , (a_(3),b_(3)) must be congruent.

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0

Find x, y if [(-2,0),(3,1)][(-1),(2x)]+[(-2),(1)]=2[(y),(3)]

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

Using matrix method solve the equations {:(x+2y=5),(3x-2y=-1):}

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

An equilateral triangle has each side to a. If the coordinates of its vertices are (x_(1), y_(1)), (x_(2), y_(2)) and (x_(3), y_(3)) then the square of the determinat |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)| equals